/// <param name="winSize">Detection window size. Must be aligned to block size and block stride. Must match the size of the training image. Use (64, 128) for default.</param>
/// <param name="derivAperture"></param>
publicHOGDescriptor(
SizewinSize,
SizeblockSize,
SizeblockStride,
SizecellSize,
intnbins=9,
intderivAperture=1,
doublewinSigma=-1,
doubleL2HysThreshold=0.2,
boolgammaCorrection=true)
{
_ptr=CvInvoke.cveHOGDescriptorCreate(
refwinSize,
refblockSize,
refblockStride,
refcellSize,
nbins,
derivAperture,
winSigma,
0,
L2HysThreshold,
gammaCorrection);
}
privatestaticSizeInputArrGetSize(IInputArrayarr)
{
using(InputArrayia=arr.GetInputArray())
returnia.GetSize();
}
/// <summary>
/// Create a new HOGDescriptor using the specific parameters.
/// </summary>
/// <param name="template">The template image to be detected.</param>
/// <param name="blockSize">Block size in cells. Use (16, 16) for default.</param>
/// <param name="cellSize">Cell size. Use (8, 8) for default.</param>
/// <param name="blockStride">Block stride. Must be a multiple of cell size. Use (8,8) for default.</param>
/// <param name="gammaCorrection">Do gamma correction preprocessing or not. Use true for default.</param>
/// <param name="L2HysThreshold">L2-Hys normalization method shrinkage. Use 0.2 for default.</param>
/// <param name="nbins">Number of bins. Use 9 for default.</param>
/// <param name="winSigma">Gaussian smoothing window parameter. Use -1 for default. </param>
/// <param name="derivAperture">Use 1 for default.</param>
/// Performs object detection with increasing detection window.
/// </summary>
/// <param name="image">The image to search in</param>
/// <param name="hitThreshold">
/// Threshold for the distance between features and SVM classifying plane.
/// Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
/// But if the free coefficient is omitted (which is allowed), you can specify it manually here.
///</param>
/// <param name="winStride">Window stride. Must be a multiple of block stride.</param>
/// <param name="padding"></param>
/// <param name="scale">Coefficient of the detection window increase.</param>
/// <param name="finalThreshold">After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping. Should be an integer if not using meanshift grouping. Use 2.0 for default</param>
/// <param name="useMeanshiftGrouping">If true, it will use meanshift grouping.</param>
/// <returns>The regions where positives are found</returns>
/// <param name="winSize">Detection window size. Must be aligned to block size and block stride. Must match the size of the training image. Use (64, 128) for default.</param>
/// <param name="derivAperture"></param>
publicHOGDescriptor(
SizewinSize,
SizeblockSize,
SizeblockStride,
SizecellSize,
intnbins=9,
intderivAperture=1,
doublewinSigma=-1,
doubleL2HysThreshold=0.2,
boolgammaCorrection=true)
{
_ptr=CvInvoke.cveHOGDescriptorCreate(
refwinSize,
refblockSize,
refblockStride,
refcellSize,
nbins,
derivAperture,
winSigma,
0,
L2HysThreshold,
gammaCorrection);
}
/// <summary>
/// Return the default people detector
/// </summary>
/// <returns>The default people detector</returns>
/// Performs object detection with increasing detection window.
/// </summary>
/// <param name="image">The image to search in</param>
/// <param name="hitThreshold">
/// Threshold for the distance between features and SVM classifying plane.
/// Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
/// But if the free coefficient is omitted (which is allowed), you can specify it manually here.
///</param>
/// <param name="winStride">Window stride. Must be a multiple of block stride.</param>
/// <param name="padding"></param>
/// <param name="scale">Coefficient of the detection window increase.</param>
/// <param name="finalThreshold">After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping. Should be an integer if not using meanshift grouping. Use 2.0 for default</param>
/// <param name="useMeanshiftGrouping">If true, it will use meanshift grouping.</param>
/// <returns>The regions where positives are found</returns>