|
|
@ -12,20 +12,20 @@ |
|
|
|
#include "opencv2/ml/ml.hpp" |
|
|
|
|
|
|
|
//StatModel |
|
|
|
CVAPI(void) StatModelSave(CvStatModel* model, char* filename, char* name = 0); |
|
|
|
CVAPI(void) StatModelLoad(CvStatModel* model, char* filename, char* name = 0); |
|
|
|
CVAPI(void) StatModelSave(CvStatModel* model, char* filename, char* name); |
|
|
|
CVAPI(void) StatModelLoad(CvStatModel* model, char* filename, char* name); |
|
|
|
CVAPI(void) StatModelClear(CvStatModel* model); |
|
|
|
|
|
|
|
//CvNormalBayesClassifier |
|
|
|
CVAPI(CvNormalBayesClassifier*) CvNormalBayesClassifierDefaultCreate(); |
|
|
|
CVAPI(CvNormalBayesClassifier*) CvNormalBayesClassifierCreate( CvMat* _train_data, CvMat* _responses, CvMat* _var_idx, CvMat* _sample_idx ); |
|
|
|
CVAPI(void) CvNormalBayesClassifierRelease(CvNormalBayesClassifier* classifier); |
|
|
|
CVAPI(void) CvNormalBayesClassifierRelease(CvNormalBayesClassifier** classifier); |
|
|
|
CVAPI(bool) CvNormalBayesClassifierTrain(CvNormalBayesClassifier* classifier, CvMat* _train_data, CvMat* _responses, |
|
|
|
CvMat* _var_idx, CvMat* _sample_idx, bool update ); |
|
|
|
CVAPI(float) CvNormalBayesClassifierPredict(CvNormalBayesClassifier* classifier, CvMat* _samples, CvMat* results ); |
|
|
|
//KNearest |
|
|
|
CVAPI(CvKNearest*) CvKNearestDefaultCreate(); |
|
|
|
CVAPI(void) CvKNearestRelease(CvKNearest* classifier); |
|
|
|
CVAPI(void) CvKNearestRelease(CvKNearest** classifier); |
|
|
|
CVAPI(bool) CvKNearestTrain(CvKNearest* classifier, CvMat* _train_data, CvMat* _responses, |
|
|
|
CvMat* _sample_idx, bool is_regression, |
|
|
|
int _max_k, bool _update_base); |
|
|
@ -36,7 +36,7 @@ CVAPI(float) CvKNearestFindNearest(CvKNearest* classifier, CvMat* _samples, int |
|
|
|
|
|
|
|
//EM |
|
|
|
CVAPI(CvEM*) CvEMDefaultCreate(); |
|
|
|
CVAPI(void) CvEMRelease(CvEM* model); |
|
|
|
CVAPI(void) CvEMRelease(CvEM** model); |
|
|
|
CVAPI(bool) CvEMTrain(CvEM* model, CvMat* samples, CvMat* sample_idx, |
|
|
|
CvEMParams params, CvMat* labels ); |
|
|
|
CVAPI(float) CvEMPredict(CvEM* model, CvMat* sample, CvMat* probs ); |
|
|
@ -61,7 +61,7 @@ CVAPI(bool) CvSVMTrainAuto(CvSVM* model, CvMat* _train_data, CvMat* _responses, |
|
|
|
CvParamGrid coef_grid, |
|
|
|
CvParamGrid degree_grid); |
|
|
|
CVAPI(void) CvSVMGetDefaultGrid(int gridType, CvParamGrid* grid); |
|
|
|
CVAPI(void) CvSVMRelease(CvSVM* model); |
|
|
|
CVAPI(void) CvSVMRelease(CvSVM** model); |
|
|
|
CVAPI(float) CvSVMPredict(CvSVM* model, CvMat* _sample ); |
|
|
|
CVAPI(float*) CvSVMGetSupportVector(CvSVM* model, int i); |
|
|
|
CVAPI(int) CvSVMGetSupportVectorCount(CvSVM* model); |
|
|
@ -72,7 +72,7 @@ CVAPI(void) CvSVMGetParameters(CvSVM* model, CvSVMParams* param); |
|
|
|
CVAPI(CvANN_MLP*) CvANN_MLPCreate(CvMat* _layer_sizes, |
|
|
|
int _activ_func, |
|
|
|
double _f_param1, double _f_param2 ); |
|
|
|
CVAPI(void) CvANN_MLPRelease(CvANN_MLP* model); |
|
|
|
CVAPI(void) CvANN_MLPRelease(CvANN_MLP** model); |
|
|
|
CVAPI(int) CvANN_MLPTrain(CvANN_MLP* model, CvMat* _inputs, CvMat* _outputs, |
|
|
|
CvMat* _sample_weights, CvMat* _sample_idx, |
|
|
|
CvANN_MLP_TrainParams* _params, |
|
|
@ -83,9 +83,9 @@ CVAPI(int) CvANN_MLPGetLayerCount(CvANN_MLP* model); |
|
|
|
|
|
|
|
//Decision Tree |
|
|
|
CVAPI(CvDTreeParams*) CvDTreeParamsCreate(); |
|
|
|
CVAPI(void) CvDTreeParamsRelease(CvDTreeParams* params); |
|
|
|
CVAPI(void) CvDTreeParamsRelease(CvDTreeParams** params); |
|
|
|
CVAPI(CvDTree*) CvDTreeCreate(); |
|
|
|
CVAPI(void) CvDTreeRelease(CvDTree* model); |
|
|
|
CVAPI(void) CvDTreeRelease(CvDTree** model); |
|
|
|
CVAPI(bool) CvDTreeTrain(CvDTree* model, CvMat* _train_data, int _tflag, |
|
|
|
CvMat* _responses, CvMat* _var_idx, |
|
|
|
CvMat* _sample_idx, CvMat* _var_type, |
|
|
@ -95,10 +95,10 @@ CVAPI(CvDTreeNode*) CvDTreePredict(CvDTree* model, CvMat* _sample, CvMat* _missi |
|
|
|
|
|
|
|
//Random Tree |
|
|
|
CVAPI(CvRTParams*) CvRTParamsCreate(); |
|
|
|
CVAPI(void) CvRTParamsRelease(CvRTParams* params); |
|
|
|
CVAPI(void) CvRTParamsRelease(CvRTParams** params); |
|
|
|
|
|
|
|
CVAPI(CvRTrees*) CvRTreesCreate(); |
|
|
|
CVAPI(void) CvRTreesRelease(CvRTrees* model); |
|
|
|
CVAPI(void) CvRTreesRelease(CvRTrees** model); |
|
|
|
CVAPI(bool) CvRTreesTrain( CvRTrees* model, CvMat* _train_data, int _tflag, |
|
|
|
CvMat* _responses, CvMat* _var_idx, |
|
|
|
CvMat* _sample_idx, CvMat* _var_type, |
|
|
@ -118,11 +118,11 @@ CVAPI(CvMat*) CvRTreesGetVarImportance(CvRTrees* model); |
|
|
|
|
|
|
|
//Extreme Random Tree |
|
|
|
CVAPI(CvERTrees*) CvERTreesCreate(); |
|
|
|
CVAPI(void) CvERTreesRelease(CvERTrees* model); |
|
|
|
CVAPI(void) CvERTreesRelease(CvERTrees** model); |
|
|
|
|
|
|
|
//CvBoost |
|
|
|
CVAPI(CvBoostParams*) CvBoostParamsCreate(); |
|
|
|
CVAPI(void) CvBoostParamsRelease(CvBoostParams* params); |
|
|
|
CVAPI(void) CvBoostParamsRelease(CvBoostParams** params); |
|
|
|
|
|
|
|
CVAPI(CvBoost*) CvBoostCreate(); |
|
|
|
CVAPI(void) CvBoostRelease(CvBoost* model); |
|
|
@ -133,8 +133,17 @@ CVAPI(bool) CvBoostTrain(CvBoost* model, CvMat* _train_data, int _tflag, |
|
|
|
CvBoostParams params, |
|
|
|
bool update ); |
|
|
|
|
|
|
|
CVAPI(float) CvBoostPredict(CvBoost* model, CvMat* _sample, CvMat* _missing=0, |
|
|
|
CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, |
|
|
|
bool raw_mode=false ); |
|
|
|
CVAPI(float) CvBoostPredict(CvBoost* model, CvMat* _sample, CvMat* _missing, |
|
|
|
CvMat* weak_responses, CvSlice slice, |
|
|
|
bool raw_mode); |
|
|
|
|
|
|
|
//CvGBTrees |
|
|
|
CVAPI(CvGBTrees*) CvGBTreesCreate(); |
|
|
|
CVAPI(void) CvGBTreesRelease(CvGBTrees** model); |
|
|
|
CVAPI(bool) CvGBTreeTrain(CvGBTrees* model, const CvMat* trainData, int tflag, |
|
|
|
const CvMat* responses, const CvMat* varIdx, |
|
|
|
const CvMat* sampleIdx, const CvMat* varType, |
|
|
|
const CvMat* missingDataMask, |
|
|
|
CvGBTreesParams params, |
|
|
|
bool update); |
|
|
|
#endif |