Browse Source

Documentation improvements.

pull/768/merge
Canming Huang 7 months ago
parent
commit
9dcf2881e6
  1. 5
      Emgu.CV.Contrib/DepthAI/Device.cs
  2. 1
      Emgu.CV/Core/Mat.cs
  3. 14
      Emgu.CV/Dnn/DnnInvoke.cs

5
Emgu.CV.Contrib/DepthAI/Device.cs

@ -22,8 +22,11 @@ namespace Emgu.CV.Dai
public partial class Device : UnmanagedObject
{
/// <summary>
/// Create a new device
/// Initializes a new instance of the <see cref="Device"/> class using the specified DepthAI pipeline.
/// </summary>
/// <param name="pipeline">
/// The <see cref="Pipeline"/> object that defines the configuration and operations for the DepthAI device.
/// </param>
public Device(Pipeline pipeline)
{
_ptr = DaiInvoke.daiDeviceCreate(pipeline);

1
Emgu.CV/Core/Mat.cs

@ -1295,6 +1295,7 @@ namespace Emgu.CV
/// Returns a memory span that wraps the underlying memory buffer.
/// </summary>
/// <param name="size">The size of the Span. If it is less than or equals to 0, the full span is used.</param>
/// <typeparam name="T">The type of the elements in the span.</typeparam>
/// <returns>A memory span that wraps the underlying memory buffer.</returns>
public Span<T> GetSpan<T>(int size = 0) where T : struct
{

14
Emgu.CV/Dnn/DnnInvoke.cs

@ -319,10 +319,18 @@ namespace Emgu.CV.Dnn
private static extern IntPtr cveReadNetFromTensorflow2(IntPtr bufferModel, int lenModel, IntPtr bufferConfig, int lenConfig);
/// <summary>
/// Reads a network model stored in TFLite framework's format.
/// Reads a network model stored in the TensorFlow Lite (TFLite) framework's format.
/// </summary>
/// <param name="model"></param>
/// <returns>Net object</returns>
/// <param name="model">
/// The file path to the TFLite model.
/// </param>
/// <returns>
/// A <see cref="Net"/> object representing the loaded network.
/// </returns>
/// <remarks>
/// This method loads a pre-trained neural network model stored in the TFLite format.
/// The model can then be used for inference or further processing.
/// </remarks>
public static Net ReadNetFromTFLite(String model)
{
using (CvString modelStr = new CvString(model))

Loading…
Cancel
Save