You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
738 lines
32 KiB
738 lines
32 KiB
// Copyright (c) 2014 Daniel Grunwald
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
|
// software and associated documentation files (the "Software"), to deal in the Software
|
|
// without restriction, including without limitation the rights to use, copy, modify, merge,
|
|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
|
|
// to whom the Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all copies or
|
|
// substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
|
|
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Collections.Immutable;
|
|
using System.Diagnostics;
|
|
using System.Linq;
|
|
|
|
using ICSharpCode.Decompiler.CSharp.Syntax;
|
|
using ICSharpCode.Decompiler.CSharp.Transforms;
|
|
using ICSharpCode.Decompiler.IL;
|
|
using ICSharpCode.Decompiler.Semantics;
|
|
using ICSharpCode.Decompiler.TypeSystem;
|
|
using ICSharpCode.Decompiler.Util;
|
|
|
|
namespace ICSharpCode.Decompiler.CSharp
|
|
{
|
|
/// <summary>
|
|
/// Helper struct so that the compiler can ensure we don't forget both the ILInstruction annotation and the ResolveResult annotation.
|
|
/// Use '.WithILInstruction(...)' or '.WithoutILInstruction()' to create an instance of this struct.
|
|
/// </summary>
|
|
struct ExpressionWithILInstruction
|
|
{
|
|
public readonly Expression Expression;
|
|
|
|
public IEnumerable<ILInstruction> ILInstructions {
|
|
get { return Expression.Annotations.OfType<ILInstruction>(); }
|
|
}
|
|
|
|
internal ExpressionWithILInstruction(Expression expression)
|
|
{
|
|
Debug.Assert(expression != null);
|
|
this.Expression = expression;
|
|
}
|
|
|
|
public static implicit operator Expression(ExpressionWithILInstruction expression)
|
|
{
|
|
return expression.Expression;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Helper struct so that the compiler can ensure we don't forget both the ILInstruction annotation and the ResolveResult annotation.
|
|
/// Use '.WithRR(...)'.
|
|
/// </summary>
|
|
struct ExpressionWithResolveResult
|
|
{
|
|
public readonly Expression Expression;
|
|
|
|
// Because ResolveResult is frequently accessed within the ExpressionBuilder, we put it directly
|
|
// in this struct instead of accessing it through the list of annotations.
|
|
public readonly ResolveResult ResolveResult;
|
|
|
|
public IType Type {
|
|
get { return ResolveResult.Type; }
|
|
}
|
|
|
|
internal ExpressionWithResolveResult(Expression expression)
|
|
{
|
|
Debug.Assert(expression != null);
|
|
this.Expression = expression;
|
|
this.ResolveResult = expression.Annotation<ResolveResult>() ?? ErrorResolveResult.UnknownError;
|
|
}
|
|
|
|
internal ExpressionWithResolveResult(Expression expression, ResolveResult resolveResult)
|
|
{
|
|
Debug.Assert(expression != null && resolveResult != null);
|
|
Debug.Assert(expression.Annotation<ResolveResult>() == resolveResult);
|
|
this.Expression = expression;
|
|
this.ResolveResult = resolveResult;
|
|
}
|
|
|
|
public static implicit operator Expression(ExpressionWithResolveResult expression)
|
|
{
|
|
return expression.Expression;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Output of C# ExpressionBuilder -- a decompiled C# expression that has both a resolve result and ILInstruction annotation.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// The resolve result is also always available as annotation on the expression, but having
|
|
/// TranslatedExpression as a separate type is still useful to ensure that no case in the expression builder
|
|
/// forgets to add the annotation.
|
|
/// </remarks>
|
|
[DebuggerDisplay("{Expression} : {ResolveResult}")]
|
|
struct TranslatedExpression
|
|
{
|
|
public readonly Expression Expression;
|
|
|
|
// Because ResolveResult is frequently accessed within the ExpressionBuilder, we put it directly
|
|
// in this struct instead of accessing it through the list of annotations.
|
|
public readonly ResolveResult ResolveResult;
|
|
|
|
public IEnumerable<ILInstruction> ILInstructions {
|
|
get { return Expression.Annotations.OfType<ILInstruction>(); }
|
|
}
|
|
|
|
public IType Type {
|
|
get { return ResolveResult.Type; }
|
|
}
|
|
|
|
internal TranslatedExpression(Expression expression)
|
|
{
|
|
Debug.Assert(expression != null);
|
|
this.Expression = expression;
|
|
this.ResolveResult = expression.Annotation<ResolveResult>() ?? ErrorResolveResult.UnknownError;
|
|
}
|
|
|
|
internal TranslatedExpression(Expression expression, ResolveResult resolveResult)
|
|
{
|
|
Debug.Assert(expression != null && resolveResult != null);
|
|
Debug.Assert(expression.Annotation<ResolveResult>() == resolveResult);
|
|
this.ResolveResult = resolveResult;
|
|
this.Expression = expression;
|
|
}
|
|
|
|
public static implicit operator Expression(TranslatedExpression expression)
|
|
{
|
|
return expression.Expression;
|
|
}
|
|
|
|
public static implicit operator ExpressionWithResolveResult(TranslatedExpression expression)
|
|
{
|
|
return new ExpressionWithResolveResult(expression.Expression, expression.ResolveResult);
|
|
}
|
|
|
|
public static implicit operator ExpressionWithILInstruction(TranslatedExpression expression)
|
|
{
|
|
return new ExpressionWithILInstruction(expression.Expression);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a new TranslatedExpression that represents the specified descendant expression.
|
|
/// All ILInstruction annotations from the current expression are copied to the descendant expression.
|
|
/// The descendant expression is detached from the AST.
|
|
/// </summary>
|
|
public TranslatedExpression UnwrapChild(Expression descendant)
|
|
{
|
|
if (descendant == Expression)
|
|
return this;
|
|
for (AstNode parent = descendant.Parent; parent != null; parent = parent.Parent)
|
|
{
|
|
foreach (var inst in parent.Annotations.OfType<ILInstruction>())
|
|
descendant.AddAnnotation(inst);
|
|
if (parent == Expression)
|
|
return new TranslatedExpression(descendant.Detach());
|
|
}
|
|
throw new ArgumentException("descendant must be a descendant of the current node");
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds casts (if necessary) to convert this expression to the specified target type.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// If the target type is narrower than the source type, the value is truncated.
|
|
/// If the target type is wider than the source type, the value is sign- or zero-extended based on the
|
|
/// sign of the source type.
|
|
/// This fits with the ExpressionBuilder's post-condition, so e.g. an assignment can simply
|
|
/// call <c>Translate(stloc.Value).ConvertTo(stloc.Variable.Type)</c> and have the overall C# semantics match the IL semantics.
|
|
///
|
|
/// From the caller's perspective, IntPtr/UIntPtr behave like normal C# integers except that they have native int size.
|
|
/// All the special cases necessary to make IntPtr/UIntPtr behave sanely are handled internally in ConvertTo().
|
|
///
|
|
/// Post-condition:
|
|
/// The "expected evaluation result" is the value computed by <c>this.Expression</c>,
|
|
/// converted to targetType via an IL conv instruction.
|
|
///
|
|
/// ConvertTo(targetType, allowImplicitConversion=false).Type must be equal to targetType (modulo identity conversions).
|
|
/// The value computed by the converted expression must match the "expected evaluation result".
|
|
///
|
|
/// ConvertTo(targetType, allowImplicitConversion=true) must produce an expression that,
|
|
/// when evaluated in a context where it will be implicitly converted to targetType,
|
|
/// evaluates to the "expected evaluation result".
|
|
/// </remarks>
|
|
public TranslatedExpression ConvertTo(IType targetType, ExpressionBuilder expressionBuilder, bool checkForOverflow = false, bool allowImplicitConversion = false)
|
|
{
|
|
var type = this.Type;
|
|
if (NormalizeTypeVisitor.IgnoreNullabilityAndTuples.EquivalentTypes(type, targetType))
|
|
{
|
|
// Make explicit conversion implicit, if possible
|
|
if (allowImplicitConversion)
|
|
{
|
|
switch (ResolveResult)
|
|
{
|
|
case ConversionResolveResult conversion:
|
|
{
|
|
if (Expression is CastExpression cast && CastCanBeMadeImplicit(
|
|
Resolver.CSharpConversions.Get(expressionBuilder.compilation),
|
|
conversion.Conversion,
|
|
conversion.Input.Type,
|
|
type, targetType
|
|
))
|
|
{
|
|
var result = this.UnwrapChild(cast.Expression);
|
|
if (conversion.Conversion.IsUserDefined)
|
|
{
|
|
result.Expression.AddAnnotation(new ImplicitConversionAnnotation(conversion));
|
|
}
|
|
return result;
|
|
}
|
|
else if (Expression is ObjectCreateExpression oce && conversion.Conversion.IsMethodGroupConversion
|
|
&& oce.Arguments.Count == 1 && expressionBuilder.settings.UseImplicitMethodGroupConversion)
|
|
{
|
|
return this.UnwrapChild(oce.Arguments.Single());
|
|
}
|
|
break;
|
|
}
|
|
case InvocationResolveResult invocation:
|
|
{
|
|
if (Expression is ObjectCreateExpression oce && oce.Arguments.Count == 1
|
|
&& invocation.Type.IsKnownType(KnownTypeCode.NullableOfT))
|
|
{
|
|
return this.UnwrapChild(oce.Arguments.Single());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
if (targetType.Kind == TypeKind.Void || targetType.Kind == TypeKind.None)
|
|
{
|
|
return this; // don't attempt to insert cast to '?' or 'void' as these are not valid.
|
|
}
|
|
else if (targetType.Kind == TypeKind.Unknown)
|
|
{
|
|
// don't attempt cast to '?', or casts between an unknown type and a known type with same name
|
|
if (targetType.Name == "?" || targetType.ReflectionName == type.ReflectionName)
|
|
{
|
|
return this;
|
|
}
|
|
// However we still want explicit casts to types that are merely unresolved
|
|
}
|
|
var convAnnotation = this.Expression.Annotation<ImplicitConversionAnnotation>();
|
|
if (convAnnotation != null)
|
|
{
|
|
// If an implicit user-defined conversion was stripped from this expression;
|
|
// it needs to be re-introduced before we can apply other casts to this expression.
|
|
// This happens when the CallBuilder discovers that the conversion is necessary in
|
|
// order to choose the correct overload.
|
|
this.Expression.RemoveAnnotations<ImplicitConversionAnnotation>();
|
|
return new CastExpression(expressionBuilder.ConvertType(convAnnotation.TargetType), Expression)
|
|
.WithoutILInstruction()
|
|
.WithRR(convAnnotation.ConversionResolveResult)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
if (Expression is ThrowExpression && allowImplicitConversion)
|
|
{
|
|
return this; // Throw expressions have no type and are implicitly convertible to any type
|
|
}
|
|
if (Expression is TupleExpression tupleExpr && targetType is TupleType targetTupleType
|
|
&& tupleExpr.Elements.Count == targetTupleType.ElementTypes.Length)
|
|
{
|
|
// Conversion of a tuple literal: convert element-wise
|
|
var newTupleExpr = new TupleExpression();
|
|
var newElementRRs = new List<ResolveResult>();
|
|
foreach (var (elementExpr, elementTargetType) in tupleExpr.Elements.Zip(targetTupleType.ElementTypes))
|
|
{
|
|
var newElementExpr = new TranslatedExpression(elementExpr.Detach())
|
|
.ConvertTo(elementTargetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
newTupleExpr.Elements.Add(newElementExpr.Expression);
|
|
newElementRRs.Add(newElementExpr.ResolveResult);
|
|
}
|
|
return newTupleExpr.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new TupleResolveResult(
|
|
expressionBuilder.compilation, newElementRRs.ToImmutableArray(),
|
|
valueTupleAssembly: targetTupleType.GetDefinition()?.ParentModule
|
|
));
|
|
}
|
|
var compilation = expressionBuilder.compilation;
|
|
var conversions = Resolver.CSharpConversions.Get(compilation);
|
|
if (ResolveResult is ConversionResolveResult conv && Expression is CastExpression cast2
|
|
&& !conv.Conversion.IsUserDefined
|
|
&& CastCanBeMadeImplicit(conversions, conv.Conversion, conv.Input.Type, type, targetType))
|
|
{
|
|
var unwrapped = this.UnwrapChild(cast2.Expression);
|
|
if (allowImplicitConversion)
|
|
return unwrapped;
|
|
return unwrapped.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
if (Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.NullConditional && targetType.IsReferenceType == true)
|
|
{
|
|
// "(T)(x?).AccessChain" is invalid, but "((T)x)?.AccessChain" is valid and equivalent
|
|
return new UnaryOperatorExpression(
|
|
UnaryOperatorType.NullConditional,
|
|
UnwrapChild(uoe.Expression).ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion)
|
|
).WithRR(new ResolveResult(targetType)).WithoutILInstruction();
|
|
}
|
|
IType utype = NullableType.GetUnderlyingType(type);
|
|
IType targetUType = NullableType.GetUnderlyingType(targetType);
|
|
if (type.IsKnownType(KnownTypeCode.Boolean) && !targetUType.IsKnownType(KnownTypeCode.Boolean)
|
|
&& targetUType.GetStackType().IsIntegerType())
|
|
{
|
|
// convert from boolean to integer (or enum)
|
|
return new ConditionalExpression(
|
|
this.Expression,
|
|
LdcI4(compilation, 1).ConvertTo(targetType, expressionBuilder, checkForOverflow),
|
|
LdcI4(compilation, 0).ConvertTo(targetType, expressionBuilder, checkForOverflow)
|
|
).WithoutILInstruction().WithRR(new ResolveResult(targetType));
|
|
}
|
|
if (targetType.IsKnownType(KnownTypeCode.Boolean))
|
|
{
|
|
// convert to boolean through byte, to simulate the truncation to 8 bits
|
|
return this.ConvertTo(compilation.FindType(KnownTypeCode.Byte), expressionBuilder, checkForOverflow)
|
|
.ConvertToBoolean(expressionBuilder);
|
|
}
|
|
|
|
// Special-case IntPtr and UIntPtr: they behave extremely weird, see IntPtr.txt for details.
|
|
if (type.IsKnownType(KnownTypeCode.IntPtr))
|
|
{ // Conversion from IntPtr
|
|
// Direct cast only works correctly for IntPtr -> long.
|
|
// IntPtr -> int works correctly only in checked context.
|
|
// Everything else can be worked around by casting via long.
|
|
if (!(targetType.IsKnownType(KnownTypeCode.Int64) || targetType.Kind == TypeKind.NInt
|
|
|| (checkForOverflow && targetType.IsKnownType(KnownTypeCode.Int32))
|
|
|| targetType.Kind.IsAnyPointer() || targetType.Kind == TypeKind.ByReference))
|
|
{
|
|
var convertVia = expressionBuilder.settings.NativeIntegers ? SpecialType.NInt : compilation.FindType(KnownTypeCode.Int64);
|
|
return this.ConvertTo(convertVia, expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
}
|
|
else if (type.IsKnownType(KnownTypeCode.UIntPtr))
|
|
{ // Conversion from UIntPtr
|
|
// Direct cast only works correctly for UIntPtr -> ulong.
|
|
// UIntPtr -> uint works correctly only in checked context.
|
|
// Everything else can be worked around by casting via ulong.
|
|
if (!(targetType.IsKnownType(KnownTypeCode.UInt64) || targetType.Kind == TypeKind.NUInt
|
|
|| (checkForOverflow && targetType.IsKnownType(KnownTypeCode.UInt32))
|
|
|| targetType.Kind.IsAnyPointer() || targetType.Kind == TypeKind.ByReference))
|
|
{
|
|
var convertVia = expressionBuilder.settings.NativeIntegers ? SpecialType.NUInt : compilation.FindType(KnownTypeCode.UInt64);
|
|
return this.ConvertTo(convertVia, expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
}
|
|
if (targetUType.IsKnownType(KnownTypeCode.IntPtr) && utype.GetStackType().IsIntegerType())
|
|
{ // Conversion to IntPtr
|
|
if (type.IsKnownType(KnownTypeCode.Int32) || type.Kind == TypeKind.NInt)
|
|
{
|
|
// normal casts work for int/nint (both in checked and unchecked context)
|
|
// note that pointers only allow normal casts in unchecked contexts
|
|
}
|
|
else if (expressionBuilder.settings.NativeIntegers)
|
|
{
|
|
// if native integer types are available, prefer using those
|
|
return this.ConvertTo(SpecialType.NInt, expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
else if (checkForOverflow)
|
|
{
|
|
// if overflow-checking is enabled, we can simply cast via long:
|
|
// (and long itself works directly in checked context)
|
|
if (!type.IsKnownType(KnownTypeCode.Int64))
|
|
{
|
|
return this.ConvertTo(compilation.FindType(KnownTypeCode.Int64), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
}
|
|
else if (!type.Kind.IsAnyPointer())
|
|
{
|
|
// If overflow-checking is disabled, the only way to truncate to native size
|
|
// without throwing an exception in 32-bit mode is to use a pointer type.
|
|
return this.ConvertTo(new PointerType(compilation.FindType(KnownTypeCode.Void)), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
}
|
|
else if (targetUType.IsKnownType(KnownTypeCode.UIntPtr) && utype.GetStackType().IsIntegerType())
|
|
{ // Conversion to UIntPtr
|
|
if (type.IsKnownType(KnownTypeCode.UInt32) || type.Kind.IsAnyPointer() || type.Kind == TypeKind.NUInt)
|
|
{
|
|
// normal casts work for uint/nuint and pointers (both in checked and unchecked context)
|
|
}
|
|
else if (expressionBuilder.settings.NativeIntegers)
|
|
{
|
|
// if native integer types are available, prefer using those
|
|
return this.ConvertTo(SpecialType.NUInt, expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
else if (checkForOverflow)
|
|
{
|
|
// if overflow-checking is enabled, we can simply cast via ulong:
|
|
// (and ulong itself works directly in checked context)
|
|
if (!type.IsKnownType(KnownTypeCode.UInt64))
|
|
{
|
|
return this.ConvertTo(compilation.FindType(KnownTypeCode.UInt64), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// If overflow-checking is disabled, the only way to truncate to native size
|
|
// without throwing an exception in 32-bit mode is to use a pointer type.
|
|
return this.ConvertTo(new PointerType(compilation.FindType(KnownTypeCode.Void)), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
}
|
|
|
|
if (targetType.Kind.IsAnyPointer() && type.Kind == TypeKind.Enum)
|
|
{
|
|
// enum to pointer: C# doesn't allow such casts
|
|
// -> convert via underlying type
|
|
return this.ConvertTo(type.GetEnumUnderlyingType(), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
else if (targetUType.Kind == TypeKind.Enum && type.Kind.IsAnyPointer())
|
|
{
|
|
// pointer to enum: C# doesn't allow such casts
|
|
// -> convert via underlying type
|
|
return this.ConvertTo(targetUType.GetEnumUnderlyingType(), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
if (targetType.Kind.IsAnyPointer() && type.IsKnownType(KnownTypeCode.Char)
|
|
|| targetUType.IsKnownType(KnownTypeCode.Char) && type.Kind.IsAnyPointer())
|
|
{
|
|
// char <-> pointer: C# doesn't allow such casts
|
|
// -> convert via ushort
|
|
return this.ConvertTo(compilation.FindType(KnownTypeCode.UInt16), expressionBuilder, checkForOverflow)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow);
|
|
}
|
|
if (targetType.Kind == TypeKind.Pointer && type.Kind == TypeKind.ByReference && Expression is DirectionExpression)
|
|
{
|
|
// convert from reference to pointer
|
|
Expression arg = ((DirectionExpression)Expression).Expression.Detach();
|
|
var pointerType = new PointerType(((ByReferenceType)type).ElementType);
|
|
if (arg is UnaryOperatorExpression argUOE && argUOE.Operator == UnaryOperatorType.Dereference)
|
|
{
|
|
// &*ptr -> ptr
|
|
return new TranslatedExpression(argUOE).UnwrapChild(argUOE.Expression)
|
|
.ConvertTo(targetType, expressionBuilder);
|
|
}
|
|
var pointerExpr = new UnaryOperatorExpression(UnaryOperatorType.AddressOf, arg)
|
|
.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new ResolveResult(pointerType));
|
|
// perform remaining pointer cast, if necessary
|
|
return pointerExpr.ConvertTo(targetType, expressionBuilder);
|
|
}
|
|
Expression expr;
|
|
if (targetType.Kind == TypeKind.ByReference)
|
|
{
|
|
if (NormalizeTypeVisitor.TypeErasure.EquivalentTypes(targetType, this.Type))
|
|
{
|
|
return this;
|
|
}
|
|
var elementType = ((ByReferenceType)targetType).ElementType;
|
|
if (this.Expression is DirectionExpression thisDir && this.ILInstructions.Any(i => i.OpCode == OpCode.AddressOf)
|
|
&& thisDir.Expression.GetResolveResult()?.Type.GetStackType() == elementType.GetStackType())
|
|
{
|
|
// When converting a reference to a temporary to a different type,
|
|
// apply the cast to the temporary instead.
|
|
var convertedTemp = this.UnwrapChild(thisDir.Expression).ConvertTo(elementType, expressionBuilder, checkForOverflow);
|
|
return new DirectionExpression(FieldDirection.Ref, convertedTemp)
|
|
.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new ByReferenceResolveResult(convertedTemp.ResolveResult, ReferenceKind.Ref));
|
|
}
|
|
if (this.Type.Kind == TypeKind.ByReference && !IsFixedVariable())
|
|
{
|
|
// Convert between managed reference types.
|
|
// We can't do this by going through a pointer type because that would temporarily stop GC tracking.
|
|
// Instead, emit `ref Unsafe.As<T>(ref expr)`
|
|
return expressionBuilder.CallUnsafeIntrinsic("As", new[] { this.Expression },
|
|
typeArguments: new IType[] { ((ByReferenceType)this.Type).ElementType, elementType },
|
|
returnType: targetType);
|
|
}
|
|
// Convert from integer/pointer to reference.
|
|
// First, convert to the corresponding pointer type:
|
|
var arg = this.ConvertTo(new PointerType(elementType), expressionBuilder, checkForOverflow);
|
|
ResolveResult elementRR;
|
|
if (arg.Expression is UnaryOperatorExpression unary && unary.Operator == UnaryOperatorType.AddressOf)
|
|
{
|
|
// If we already have an address -> unwrap
|
|
expr = arg.UnwrapChild(unary.Expression);
|
|
elementRR = expr.GetResolveResult();
|
|
}
|
|
else
|
|
{
|
|
// Otherwise dereference the pointer:
|
|
expr = new UnaryOperatorExpression(UnaryOperatorType.Dereference, arg.Expression);
|
|
elementRR = new ResolveResult(elementType);
|
|
expr.AddAnnotation(elementRR);
|
|
}
|
|
// And then take a reference:
|
|
return new DirectionExpression(FieldDirection.Ref, expr)
|
|
.WithoutILInstruction()
|
|
.WithRR(new ByReferenceResolveResult(elementRR, ReferenceKind.Ref));
|
|
}
|
|
if (this.ResolveResult.IsCompileTimeConstant && this.ResolveResult.ConstantValue != null
|
|
&& NullableType.IsNullable(targetType) && !utype.Equals(targetUType)
|
|
&& targetUType.GetStackType().IsIntegerType())
|
|
{
|
|
// Casts like `(uint?)-1` are only valid in an explicitly unchecked context, but we
|
|
// don't have logic to ensure such a context (usually we emit into an implicitly unchecked context).
|
|
// This only applies with constants as input (int->uint? is fine in implicitly unchecked context).
|
|
// We use an intermediate cast to the nullable's underlying type, which results
|
|
// in a constant conversion, so the final output will be something like `(uint?)uint.MaxValue`
|
|
return ConvertTo(targetUType, expressionBuilder, checkForOverflow, allowImplicitConversion: false)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
var rr = expressionBuilder.resolver.WithCheckForOverflow(checkForOverflow).ResolveCast(targetType, ResolveResult);
|
|
if (rr.IsCompileTimeConstant && !rr.IsError)
|
|
{
|
|
var convertedResult = expressionBuilder.ConvertConstantValue(rr, allowImplicitConversion)
|
|
.WithILInstruction(this.ILInstructions);
|
|
if (convertedResult.Expression is PrimitiveExpression outputLiteral && this.Expression is PrimitiveExpression inputLiteral)
|
|
{
|
|
outputLiteral.Format = inputLiteral.Format;
|
|
}
|
|
return convertedResult;
|
|
}
|
|
else if (rr.IsError && targetType.IsReferenceType == true && type.IsReferenceType == true)
|
|
{
|
|
// Conversion between two reference types, but no direct cast allowed? cast via object
|
|
// Just make sure we avoid infinite recursion even if the resolver falsely claims we can't cast directly:
|
|
if (!(targetType.IsKnownType(KnownTypeCode.Object) || type.IsKnownType(KnownTypeCode.Object)))
|
|
{
|
|
return this.ConvertTo(compilation.FindType(KnownTypeCode.Object), expressionBuilder)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
}
|
|
else if (type.Kind == TypeKind.Dynamic && targetType.IsReferenceType == true && !targetType.IsKnownType(KnownTypeCode.Object))
|
|
{
|
|
// "static" conversion between dynamic and a reference type requires us to add a cast to object,
|
|
// otherwise recompilation would produce a dynamic cast.
|
|
// (T)dynamicExpression is a "dynamic" cast
|
|
// (T)(object)dynamicExpression is a "static" cast
|
|
// as "dynamic" casts are handled differently by ExpressionBuilder.VisitDynamicConvertInstruction
|
|
// we can always insert the cast to object, if we encounter a conversion from any reference type to dynamic.
|
|
return this.ConvertTo(compilation.FindType(KnownTypeCode.Object), expressionBuilder)
|
|
.ConvertTo(targetType, expressionBuilder, checkForOverflow, allowImplicitConversion);
|
|
}
|
|
if (targetType.Kind.IsAnyPointer() && (0.Equals(ResolveResult.ConstantValue) || 0u.Equals(ResolveResult.ConstantValue)))
|
|
{
|
|
if (allowImplicitConversion)
|
|
{
|
|
return new NullReferenceExpression()
|
|
.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new ConstantResolveResult(SpecialType.NullType, null));
|
|
}
|
|
return new CastExpression(expressionBuilder.ConvertType(targetType), new NullReferenceExpression())
|
|
.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new ConstantResolveResult(targetType, null));
|
|
}
|
|
if (allowImplicitConversion)
|
|
{
|
|
if (conversions.ImplicitConversion(ResolveResult, targetType).IsValid)
|
|
{
|
|
return this;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (NormalizeTypeVisitor.IgnoreNullabilityAndTuples.EquivalentTypes(type, targetType))
|
|
{
|
|
// avoid an explicit cast when types differ only in nullability of reference types
|
|
return this;
|
|
}
|
|
}
|
|
// BaseReferenceExpression must not be used with CastExpressions
|
|
expr = Expression is BaseReferenceExpression
|
|
? new ThisReferenceExpression().WithILInstruction(this.ILInstructions)
|
|
: Expression;
|
|
var castExpr = new CastExpression(expressionBuilder.ConvertType(targetType), expr);
|
|
bool needsCheckAnnotation = targetUType.GetStackType().IsIntegerType();
|
|
if (needsCheckAnnotation)
|
|
{
|
|
if (checkForOverflow)
|
|
{
|
|
castExpr.AddAnnotation(AddCheckedBlocks.CheckedAnnotation);
|
|
}
|
|
else if (ResolveResult.IsCompileTimeConstant && targetUType.IsCSharpNativeIntegerType())
|
|
{
|
|
// unchecked potentially-overflowing cast of constant to n(u)int:
|
|
// Placement in implicitly unchecked context is not good enough when applied to compile-time constant,
|
|
// the constant must be placed into an explicit unchecked block.
|
|
// (note that non-potentially-overflowing casts will be handled by constant folding and won't get here)
|
|
castExpr.AddAnnotation(AddCheckedBlocks.ExplicitUncheckedAnnotation);
|
|
}
|
|
else
|
|
{
|
|
castExpr.AddAnnotation(AddCheckedBlocks.UncheckedAnnotation);
|
|
}
|
|
}
|
|
return castExpr.WithoutILInstruction().WithRR(rr);
|
|
}
|
|
|
|
bool IsFixedVariable()
|
|
{
|
|
if (this.Expression is DirectionExpression dirExpr)
|
|
{
|
|
var inst = dirExpr.Expression.Annotation<ILInstruction>();
|
|
return inst != null && PointerArithmeticOffset.IsFixedVariable(inst);
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets whether an implicit conversion from 'inputType' to 'newTargetType'
|
|
/// would have the same semantics as the existing cast from 'inputType' to 'oldTargetType'.
|
|
/// The existing cast is classified in 'conversion'.
|
|
/// </summary>
|
|
bool CastCanBeMadeImplicit(Resolver.CSharpConversions conversions, Conversion conversion, IType inputType, IType oldTargetType, IType newTargetType)
|
|
{
|
|
if (!conversion.IsImplicit)
|
|
{
|
|
// If the cast was required for the old conversion, avoid making it implicit.
|
|
return false;
|
|
}
|
|
if (oldTargetType.Kind == TypeKind.NInt || oldTargetType.Kind == TypeKind.NUInt
|
|
|| newTargetType.Kind == TypeKind.NInt || newTargetType.Kind == TypeKind.NUInt)
|
|
{
|
|
// nint has identity conversion with IntPtr, but the two have different implicit conversions
|
|
return false;
|
|
}
|
|
if (conversion.IsBoxingConversion)
|
|
{
|
|
return conversions.IsBoxingConversionOrInvolvingTypeParameter(inputType, newTargetType);
|
|
}
|
|
if (conversion.IsInterpolatedStringConversion)
|
|
{
|
|
return newTargetType.IsKnownType(KnownTypeCode.FormattableString)
|
|
|| newTargetType.IsKnownType(KnownTypeCode.IFormattable);
|
|
}
|
|
return conversions.IdentityConversion(oldTargetType, newTargetType);
|
|
}
|
|
|
|
TranslatedExpression LdcI4(ICompilation compilation, int val)
|
|
{
|
|
return new PrimitiveExpression(val)
|
|
.WithoutILInstruction()
|
|
.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), val));
|
|
}
|
|
|
|
/// <summary>
|
|
/// In conditional contexts, remove the bool-cast emitted when converting
|
|
/// an "implicit operator bool" invocation.
|
|
/// </summary>
|
|
public TranslatedExpression UnwrapImplicitBoolConversion(Func<IType, bool> typeFilter = null)
|
|
{
|
|
if (!this.Type.IsKnownType(KnownTypeCode.Boolean))
|
|
return this;
|
|
if (!(this.ResolveResult is ConversionResolveResult rr))
|
|
return this;
|
|
if (!(rr.Conversion.IsUserDefined && rr.Conversion.IsImplicit))
|
|
return this;
|
|
if (typeFilter != null && !typeFilter(rr.Input.Type))
|
|
return this;
|
|
if (this.Expression is CastExpression cast)
|
|
{
|
|
return this.UnwrapChild(cast.Expression);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts this expression to a boolean expression.
|
|
///
|
|
/// Expects that the input expression is an integer expression; produces an expression
|
|
/// that returns <c>true</c> iff the integer value is not 0.
|
|
///
|
|
/// If negate is true, instead produces an expression that returns <c>true</c> iff the integer value is 0.
|
|
/// </summary>
|
|
public TranslatedExpression ConvertToBoolean(ExpressionBuilder expressionBuilder, bool negate = false)
|
|
{
|
|
if (Type.IsKnownType(KnownTypeCode.Boolean) || Type.Kind == TypeKind.Unknown)
|
|
{
|
|
if (negate)
|
|
{
|
|
return expressionBuilder.LogicNot(this).WithoutILInstruction();
|
|
}
|
|
else
|
|
{
|
|
return this;
|
|
}
|
|
}
|
|
Debug.Assert(Type.GetStackType().IsIntegerType());
|
|
IType boolType = expressionBuilder.compilation.FindType(KnownTypeCode.Boolean);
|
|
if (ResolveResult.IsCompileTimeConstant && ResolveResult.ConstantValue is int)
|
|
{
|
|
bool val = (int)ResolveResult.ConstantValue != 0;
|
|
val ^= negate;
|
|
return new PrimitiveExpression(val)
|
|
.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new ConstantResolveResult(boolType, val));
|
|
}
|
|
else if (ResolveResult.IsCompileTimeConstant && ResolveResult.ConstantValue is byte)
|
|
{
|
|
bool val = (byte)ResolveResult.ConstantValue != 0;
|
|
val ^= negate;
|
|
return new PrimitiveExpression(val)
|
|
.WithILInstruction(this.ILInstructions)
|
|
.WithRR(new ConstantResolveResult(boolType, val));
|
|
}
|
|
else if (Type.Kind == TypeKind.Pointer)
|
|
{
|
|
var nullRef = new NullReferenceExpression()
|
|
.WithoutILInstruction()
|
|
.WithRR(new ConstantResolveResult(SpecialType.NullType, null));
|
|
var op = negate ? BinaryOperatorType.Equality : BinaryOperatorType.InEquality;
|
|
return new BinaryOperatorExpression(Expression, op, nullRef.Expression)
|
|
.WithoutILInstruction()
|
|
.WithRR(new OperatorResolveResult(boolType, System.Linq.Expressions.ExpressionType.NotEqual,
|
|
this.ResolveResult, nullRef.ResolveResult));
|
|
}
|
|
else
|
|
{
|
|
var zero = new PrimitiveExpression(0)
|
|
.WithoutILInstruction()
|
|
.WithRR(new ConstantResolveResult(expressionBuilder.compilation.FindType(KnownTypeCode.Int32), 0));
|
|
var op = negate ? BinaryOperatorType.Equality : BinaryOperatorType.InEquality;
|
|
return new BinaryOperatorExpression(Expression, op, zero.Expression)
|
|
.WithoutILInstruction()
|
|
.WithRR(new OperatorResolveResult(boolType, System.Linq.Expressions.ExpressionType.NotEqual,
|
|
this.ResolveResult, zero.ResolveResult));
|
|
}
|
|
}
|
|
}
|
|
}
|