You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2594 lines
115 KiB
2594 lines
115 KiB
// Copyright (c) 2014 Daniel Grunwald
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
|
// software and associated documentation files (the "Software"), to deal in the Software
|
|
// without restriction, including without limitation the rights to use, copy, modify, merge,
|
|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
|
|
// to whom the Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all copies or
|
|
// substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
|
|
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
using System.Linq;
|
|
using ICSharpCode.Decompiler.CSharp.Resolver;
|
|
using ICSharpCode.Decompiler.CSharp.Syntax;
|
|
using ICSharpCode.Decompiler.CSharp.Transforms;
|
|
using ICSharpCode.Decompiler.CSharp.TypeSystem;
|
|
using ICSharpCode.Decompiler.IL;
|
|
using ICSharpCode.Decompiler.Semantics;
|
|
using ICSharpCode.Decompiler.TypeSystem;
|
|
using ICSharpCode.Decompiler.TypeSystem.Implementation;
|
|
using ICSharpCode.Decompiler.Util;
|
|
using ExpressionType = System.Linq.Expressions.ExpressionType;
|
|
using PrimitiveType = ICSharpCode.Decompiler.CSharp.Syntax.PrimitiveType;
|
|
using System.Threading;
|
|
|
|
namespace ICSharpCode.Decompiler.CSharp
|
|
{
|
|
/// <summary>
|
|
/// Translates from ILAst to C# expressions.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// Every translated expression must have:
|
|
/// * an ILInstruction annotation
|
|
/// * a ResolveResult annotation
|
|
/// Post-condition for Translate() calls:
|
|
/// * The type of the ResolveResult must match the StackType of the corresponding ILInstruction,
|
|
/// except that the width of integer types does not need to match (I4, I and I8 count as the same stack type here)
|
|
/// * Evaluating the resulting C# expression shall produce the same side effects as evaluating the ILInstruction.
|
|
/// * If the IL instruction has <c>ResultType == StackType.Void</c>, the C# expression may evaluate to an arbitrary type and value.
|
|
/// * Otherwise, evaluating the resulting C# expression shall produce a similar value as evaluating the ILInstruction.
|
|
/// * If the IL instruction evaluates to an integer stack type (I4, I, or I8),
|
|
/// the C# type of the resulting expression shall also be an integer (or enum/pointer/char/bool) type.
|
|
/// * If sizeof(C# type) == sizeof(IL stack type), the values must be the same.
|
|
/// * If sizeof(C# type) > sizeof(IL stack type), the C# value truncated to the width of the IL stack type must equal the IL value.
|
|
/// * If sizeof(C# type) < sizeof(IL stack type), the C# value (sign/zero-)extended to the width of the IL stack type
|
|
/// must equal the IL value.
|
|
/// Whether sign or zero extension is used depends on the sign of the C# type (as determined by <c>IType.GetSign()</c>).
|
|
/// * If the IL instruction is a lifted nullable operation, and the underlying operation evaluates to an integer stack type,
|
|
/// the C# type of the resulting expression shall be Nullable{T}, where T is an integer type (as above).
|
|
/// The C# value shall be null iff the IL-level value evaluates to null, and otherwise the values shall correspond
|
|
/// as with non-lifted integer operations.
|
|
/// * If the IL instruction evaluates to a managed reference (Ref) created by starting tracking of an unmanaged reference,
|
|
/// the C# instruction may evaluate to any integral/enum/pointer type that when converted to pointer type
|
|
/// is equivalent to the managed reference.
|
|
/// * Otherwise, the C# type of the resulting expression shall match the IL stack type,
|
|
/// and the evaluated values shall be the same.
|
|
/// </remarks>
|
|
class ExpressionBuilder : ILVisitor<TranslationContext, TranslatedExpression>
|
|
{
|
|
readonly IDecompilerTypeSystem typeSystem;
|
|
readonly ITypeResolveContext decompilationContext;
|
|
internal readonly ILFunction currentFunction;
|
|
internal readonly ICompilation compilation;
|
|
internal readonly CSharpResolver resolver;
|
|
readonly TypeSystemAstBuilder astBuilder;
|
|
readonly TypeInference typeInference;
|
|
internal readonly DecompilerSettings settings;
|
|
readonly CancellationToken cancellationToken;
|
|
|
|
public ExpressionBuilder(IDecompilerTypeSystem typeSystem, ITypeResolveContext decompilationContext, ILFunction currentFunction, DecompilerSettings settings, CancellationToken cancellationToken)
|
|
{
|
|
Debug.Assert(decompilationContext != null);
|
|
this.typeSystem = typeSystem;
|
|
this.decompilationContext = decompilationContext;
|
|
this.currentFunction = currentFunction;
|
|
this.settings = settings;
|
|
this.cancellationToken = cancellationToken;
|
|
this.compilation = decompilationContext.Compilation;
|
|
this.resolver = new CSharpResolver(new CSharpTypeResolveContext(compilation.MainAssembly, null, decompilationContext.CurrentTypeDefinition, decompilationContext.CurrentMember));
|
|
this.astBuilder = new TypeSystemAstBuilder(resolver);
|
|
this.astBuilder.AlwaysUseShortTypeNames = true;
|
|
this.astBuilder.AddResolveResultAnnotations = true;
|
|
this.typeInference = new TypeInference(compilation) { Algorithm = TypeInferenceAlgorithm.Improved };
|
|
}
|
|
|
|
public AstType ConvertType(IType type)
|
|
{
|
|
var astType = astBuilder.ConvertType(type);
|
|
Debug.Assert(astType.Annotation<TypeResolveResult>() != null);
|
|
return astType;
|
|
}
|
|
|
|
public ExpressionWithResolveResult ConvertConstantValue(ResolveResult rr, bool allowImplicitConversion = false)
|
|
{
|
|
var expr = astBuilder.ConvertConstantValue(rr);
|
|
if (!allowImplicitConversion) {
|
|
if (expr is NullReferenceExpression && rr.Type.Kind != TypeKind.Null) {
|
|
expr = new CastExpression(ConvertType(rr.Type), expr);
|
|
} else {
|
|
switch (rr.Type.GetDefinition()?.KnownTypeCode) {
|
|
case KnownTypeCode.SByte:
|
|
case KnownTypeCode.Byte:
|
|
case KnownTypeCode.Int16:
|
|
case KnownTypeCode.UInt16:
|
|
expr = new CastExpression(new PrimitiveType(KnownTypeReference.GetCSharpNameByTypeCode(rr.Type.GetDefinition().KnownTypeCode)), expr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
var exprRR = expr.Annotation<ResolveResult>();
|
|
if (exprRR == null) {
|
|
exprRR = rr;
|
|
expr.AddAnnotation(rr);
|
|
}
|
|
return new ExpressionWithResolveResult(expr, exprRR);
|
|
}
|
|
|
|
public TranslatedExpression Translate(ILInstruction inst, IType typeHint = null)
|
|
{
|
|
Debug.Assert(inst != null);
|
|
cancellationToken.ThrowIfCancellationRequested();
|
|
TranslationContext context = new TranslationContext {
|
|
TypeHint = typeHint ?? SpecialType.UnknownType
|
|
};
|
|
var cexpr = inst.AcceptVisitor(this, context);
|
|
#if DEBUG
|
|
if (inst.ResultType != StackType.Void && cexpr.Type.Kind != TypeKind.Unknown && inst.ResultType != StackType.Unknown) {
|
|
// Validate the Translate post-condition (documented at beginning of this file):
|
|
if (inst.ResultType.IsIntegerType()) {
|
|
Debug.Assert(cexpr.Type.GetStackType().IsIntegerType(), "IL instructions of integer type must convert into C# expressions of integer type");
|
|
Debug.Assert(cexpr.Type.GetSign() != Sign.None, "Must have a sign specified for zero/sign-extension");
|
|
} else if (inst is ILiftableInstruction liftable && liftable.IsLifted) {
|
|
Debug.Assert(NullableType.IsNullable(cexpr.Type));
|
|
IType underlying = NullableType.GetUnderlyingType(cexpr.Type);
|
|
if (liftable.UnderlyingResultType.IsIntegerType()) {
|
|
Debug.Assert(underlying.GetStackType().IsIntegerType(), "IL instructions of integer type must convert into C# expressions of integer type");
|
|
Debug.Assert(underlying.GetSign() != Sign.None, "Must have a sign specified for zero/sign-extension");
|
|
} else {
|
|
Debug.Assert(underlying.GetStackType() == liftable.UnderlyingResultType);
|
|
}
|
|
} else if (inst.ResultType == StackType.Ref) {
|
|
Debug.Assert(cexpr.Type.GetStackType() == StackType.Ref || cexpr.Type.GetStackType().IsIntegerType());
|
|
} else {
|
|
Debug.Assert(cexpr.Type.GetStackType() == inst.ResultType);
|
|
}
|
|
}
|
|
#endif
|
|
return cexpr;
|
|
}
|
|
|
|
public TranslatedExpression TranslateCondition(ILInstruction condition, bool negate = false)
|
|
{
|
|
var expr = Translate(condition, compilation.FindType(KnownTypeCode.Boolean));
|
|
return expr.ConvertToBoolean(this, negate);
|
|
}
|
|
|
|
internal ExpressionWithResolveResult ConvertVariable(ILVariable variable)
|
|
{
|
|
Expression expr;
|
|
if (variable.Kind == VariableKind.Parameter && variable.Index < 0)
|
|
expr = new ThisReferenceExpression();
|
|
else
|
|
expr = new IdentifierExpression(variable.Name);
|
|
if (variable.Type.Kind == TypeKind.ByReference) {
|
|
// When loading a by-ref parameter, use 'ref paramName'.
|
|
// We'll strip away the 'ref' when dereferencing.
|
|
|
|
// Ensure that the IdentifierExpression itself also gets a resolve result, as that might
|
|
// get used after the 'ref' is stripped away:
|
|
var elementType = ((ByReferenceType)variable.Type).ElementType;
|
|
expr.WithRR(new ILVariableResolveResult(variable, elementType));
|
|
|
|
expr = new DirectionExpression(FieldDirection.Ref, expr);
|
|
return expr.WithRR(new ByReferenceResolveResult(elementType, isOut: false));
|
|
} else {
|
|
return expr.WithRR(new ILVariableResolveResult(variable, variable.Type));
|
|
}
|
|
}
|
|
|
|
internal bool HidesVariableWithName(string name)
|
|
{
|
|
return currentFunction.Ancestors.OfType<ILFunction>().SelectMany(f => f.Variables).Any(v => v.Name == name);
|
|
}
|
|
|
|
ExpressionWithResolveResult ConvertField(IField field, ILInstruction targetInstruction = null)
|
|
{
|
|
var target = TranslateTarget(targetInstruction,
|
|
nonVirtualInvocation: true,
|
|
memberStatic: field.IsStatic,
|
|
memberDeclaringType: field.DeclaringType);
|
|
bool requireTarget = HidesVariableWithName(field.Name)
|
|
|| (field.IsStatic ? !IsCurrentOrContainingType(field.DeclaringTypeDefinition) : !(target.Expression is ThisReferenceExpression || target.Expression is BaseReferenceExpression));
|
|
bool targetCasted = false;
|
|
var targetResolveResult = requireTarget ? target.ResolveResult : null;
|
|
|
|
bool IsUnambiguousAccess()
|
|
{
|
|
if (targetResolveResult == null) {
|
|
var result = resolver.ResolveSimpleName(field.Name, EmptyList<IType>.Instance, isInvocationTarget: false) as MemberResolveResult;
|
|
return !(result == null || result.IsError || !result.Member.Equals(field, NormalizeTypeVisitor.TypeErasure));
|
|
} else {
|
|
var lookup = new MemberLookup(resolver.CurrentTypeDefinition, resolver.CurrentTypeDefinition.ParentAssembly);
|
|
var result = lookup.Lookup(target.ResolveResult, field.Name, EmptyList<IType>.Instance, false) as MemberResolveResult;
|
|
return !(result == null || result.IsError || !result.Member.Equals(field, NormalizeTypeVisitor.TypeErasure));
|
|
}
|
|
}
|
|
|
|
while (!IsUnambiguousAccess()) {
|
|
if (!requireTarget) {
|
|
requireTarget = true;
|
|
targetResolveResult = target.ResolveResult;
|
|
} else if (!targetCasted) {
|
|
targetCasted = true;
|
|
target = target.ConvertTo(field.DeclaringType, this);
|
|
targetResolveResult = target.ResolveResult;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (requireTarget) {
|
|
return new MemberReferenceExpression(target, field.Name)
|
|
.WithRR(new MemberResolveResult(target.ResolveResult, field));
|
|
} else {
|
|
return new IdentifierExpression(field.Name)
|
|
.WithRR(new MemberResolveResult(target.ResolveResult, field));
|
|
}
|
|
}
|
|
|
|
TranslatedExpression IsType(IsInst inst)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
return new IsExpression(arg.Expression, ConvertType(inst.Type))
|
|
.WithILInstruction(inst)
|
|
.WithRR(new TypeIsResolveResult(arg.ResolveResult, inst.Type, compilation.FindType(TypeCode.Boolean)));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitIsInst(IsInst inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
arg = UnwrapBoxingConversion(arg);
|
|
return new AsExpression(arg.Expression, ConvertType(inst.Type))
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConversionResolveResult(inst.Type, arg.ResolveResult, Conversion.TryCast));
|
|
}
|
|
|
|
internal static TranslatedExpression UnwrapBoxingConversion(TranslatedExpression arg)
|
|
{
|
|
if (arg.Expression is CastExpression cast
|
|
&& arg.Type.IsKnownType(KnownTypeCode.Object)
|
|
&& arg.ResolveResult is ConversionResolveResult crr
|
|
&& crr.Conversion.IsBoxingConversion) {
|
|
// When 'as' used with value type or type parameter,
|
|
// the C# compiler implicitly boxes the input.
|
|
arg = arg.UnwrapChild(cast.Expression);
|
|
}
|
|
|
|
return arg;
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitNewObj(NewObj inst, TranslationContext context)
|
|
{
|
|
return new CallBuilder(this, typeSystem, settings).Build(inst);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitNewArr(NewArr inst, TranslationContext context)
|
|
{
|
|
var dimensions = inst.Indices.Count;
|
|
var args = inst.Indices.Select(arg => TranslateArrayIndex(arg)).ToArray();
|
|
var expr = new ArrayCreateExpression { Type = ConvertType(inst.Type) };
|
|
if (expr.Type is ComposedType ct) {
|
|
// change "new (int[,])[10] to new int[10][,]"
|
|
ct.ArraySpecifiers.MoveTo(expr.AdditionalArraySpecifiers);
|
|
}
|
|
expr.Arguments.AddRange(args.Select(arg => arg.Expression));
|
|
return expr.WithILInstruction(inst)
|
|
.WithRR(new ArrayCreateResolveResult(new ArrayType(compilation, inst.Type, dimensions), args.Select(a => a.ResolveResult).ToList(), new ResolveResult[0]));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLocAlloc(LocAlloc inst, TranslationContext context)
|
|
{
|
|
TranslatedExpression countExpression;
|
|
PointerType pointerType;
|
|
if (inst.Argument.MatchBinaryNumericInstruction(BinaryNumericOperator.Mul, out var left, out var right)
|
|
&& right.UnwrapConv(ConversionKind.SignExtend).UnwrapConv(ConversionKind.ZeroExtend).MatchSizeOf(out var elementType))
|
|
{
|
|
// Determine the element type from the sizeof
|
|
countExpression = Translate(left.UnwrapConv(ConversionKind.ZeroExtend));
|
|
pointerType = new PointerType(elementType);
|
|
} else {
|
|
// Determine the element type from the expected pointer type in this context
|
|
pointerType = context.TypeHint as PointerType;
|
|
if (pointerType != null && GetPointerArithmeticOffset(
|
|
inst.Argument, Translate(inst.Argument),
|
|
pointerType, checkForOverflow: true,
|
|
unwrapZeroExtension: true
|
|
) is TranslatedExpression offset)
|
|
{
|
|
countExpression = offset;
|
|
elementType = pointerType.ElementType;
|
|
} else {
|
|
elementType = compilation.FindType(KnownTypeCode.Byte);
|
|
pointerType = new PointerType(elementType);
|
|
countExpression = Translate(inst.Argument);
|
|
}
|
|
}
|
|
countExpression = countExpression.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this);
|
|
return new StackAllocExpression {
|
|
Type = ConvertType(elementType),
|
|
CountExpression = countExpression
|
|
}.WithILInstruction(inst).WithRR(new ResolveResult(new PointerType(elementType)));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdcI4(LdcI4 inst, TranslationContext context)
|
|
{
|
|
string literalValue = null;
|
|
if (ShouldDisplayAsHex(inst.Value, inst.Parent)) {
|
|
literalValue = $"0x{inst.Value:X}";
|
|
}
|
|
var expr = new PrimitiveExpression(inst.Value, literalValue)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), inst.Value));
|
|
return AdjustConstantExpressionToType(expr, context.TypeHint);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdcI8(LdcI8 inst, TranslationContext context)
|
|
{
|
|
string literalValue = null;
|
|
if (ShouldDisplayAsHex(inst.Value, inst.Parent)) {
|
|
literalValue = $"0x{inst.Value:X}";
|
|
}
|
|
return new PrimitiveExpression(inst.Value, literalValue)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int64), inst.Value));
|
|
}
|
|
|
|
private bool ShouldDisplayAsHex(long value, ILInstruction parent)
|
|
{
|
|
if (parent is Conv conv)
|
|
parent = conv.Parent;
|
|
if (value <= 9)
|
|
return false;
|
|
switch (parent) {
|
|
case BinaryNumericInstruction bni:
|
|
if (bni.Operator == BinaryNumericOperator.BitAnd
|
|
|| bni.Operator == BinaryNumericOperator.BitOr
|
|
|| bni.Operator == BinaryNumericOperator.BitXor)
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdcF4(LdcF4 inst, TranslationContext context)
|
|
{
|
|
return new PrimitiveExpression(inst.Value)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Single), inst.Value));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdcF8(LdcF8 inst, TranslationContext context)
|
|
{
|
|
return new PrimitiveExpression(inst.Value)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Double), inst.Value));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdcDecimal(LdcDecimal inst, TranslationContext context)
|
|
{
|
|
var expr = astBuilder.ConvertConstantValue(compilation.FindType(KnownTypeCode.Decimal), inst.Value);
|
|
return new TranslatedExpression(expr.WithILInstruction(inst));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdStr(LdStr inst, TranslationContext context)
|
|
{
|
|
return new PrimitiveExpression(inst.Value)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.String), inst.Value));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdNull(LdNull inst, TranslationContext context)
|
|
{
|
|
return GetDefaultValueExpression(SpecialType.NullType).WithILInstruction(inst);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDefaultValue(DefaultValue inst, TranslationContext context)
|
|
{
|
|
return GetDefaultValueExpression(inst.Type).WithILInstruction(inst);
|
|
}
|
|
|
|
internal ExpressionWithResolveResult GetDefaultValueExpression(IType type)
|
|
{
|
|
Expression expr;
|
|
IType constantType;
|
|
if (type.IsReferenceType == true || type.IsKnownType(KnownTypeCode.NullableOfT)) {
|
|
expr = new NullReferenceExpression();
|
|
constantType = SpecialType.NullType;
|
|
} else {
|
|
expr = new DefaultValueExpression(ConvertType(type));
|
|
constantType = type;
|
|
}
|
|
return expr.WithRR(new ConstantResolveResult(constantType, null));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitSizeOf(SizeOf inst, TranslationContext context)
|
|
{
|
|
return new SizeOfExpression(ConvertType(inst.Type))
|
|
.WithILInstruction(inst)
|
|
.WithRR(new SizeOfResolveResult(compilation.FindType(KnownTypeCode.Int32), inst.Type, null));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdTypeToken(LdTypeToken inst, TranslationContext context)
|
|
{
|
|
return new MemberReferenceExpression(new TypeOfExpression(ConvertType(inst.Type)), "TypeHandle")
|
|
.WithILInstruction(inst)
|
|
.WithRR(new TypeOfResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeTypeHandle")), inst.Type));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitBitNot(BitNot inst, TranslationContext context)
|
|
{
|
|
var argument = Translate(inst.Argument);
|
|
var argUType = NullableType.GetUnderlyingType(argument.Type);
|
|
|
|
if (argUType.GetStackType().GetSize() < inst.UnderlyingResultType.GetSize()
|
|
|| argUType.Kind == TypeKind.Enum && argUType.IsSmallIntegerType()
|
|
|| argUType.GetStackType() == StackType.I
|
|
|| argUType.IsKnownType(KnownTypeCode.Boolean)
|
|
|| argUType.IsKnownType(KnownTypeCode.Char))
|
|
{
|
|
// Argument is undersized (even after implicit integral promotion to I4)
|
|
// -> we need to perform sign/zero-extension before the BitNot.
|
|
// Same if the argument is an enum based on a small integer type
|
|
// (those don't undergo numeric promotion in C# the way non-enum small integer types do).
|
|
// Same if the type is one that does not support ~ (IntPtr, bool and char).
|
|
StackType targetStackType = inst.UnderlyingResultType;
|
|
if (targetStackType == StackType.I) {
|
|
// IntPtr doesn't support operator ~.
|
|
// Note that it's OK to use a type that's larger than necessary.
|
|
targetStackType = StackType.I8;
|
|
}
|
|
IType targetType = compilation.FindType(targetStackType.ToKnownTypeCode(argUType.GetSign()));
|
|
if (inst.IsLifted) {
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
}
|
|
argument = argument.ConvertTo(targetType, this);
|
|
}
|
|
|
|
return new UnaryOperatorExpression(UnaryOperatorType.BitNot, argument)
|
|
.WithRR(resolver.ResolveUnaryOperator(UnaryOperatorType.BitNot, argument.ResolveResult))
|
|
.WithILInstruction(inst);
|
|
}
|
|
|
|
internal ExpressionWithResolveResult LogicNot(TranslatedExpression expr)
|
|
{
|
|
return new UnaryOperatorExpression(UnaryOperatorType.Not, expr.Expression)
|
|
.WithRR(new OperatorResolveResult(compilation.FindType(KnownTypeCode.Boolean), ExpressionType.Not, expr.ResolveResult));
|
|
}
|
|
|
|
readonly HashSet<ILVariable> loadedVariablesSet = new HashSet<ILVariable>();
|
|
|
|
protected internal override TranslatedExpression VisitLdLoc(LdLoc inst, TranslationContext context)
|
|
{
|
|
if (inst.Variable.Kind == VariableKind.StackSlot && inst.Variable.IsSingleDefinition) {
|
|
loadedVariablesSet.Add(inst.Variable);
|
|
}
|
|
return ConvertVariable(inst.Variable).WithILInstruction(inst);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdLoca(LdLoca inst, TranslationContext context)
|
|
{
|
|
var expr = ConvertVariable(inst.Variable).WithILInstruction(inst);
|
|
// Note that we put the instruction on the IdentifierExpression instead of the DirectionExpression,
|
|
// because the DirectionExpression might get removed by dereferencing instructions such as LdObj
|
|
return new DirectionExpression(FieldDirection.Ref, expr.Expression)
|
|
.WithoutILInstruction()
|
|
.WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitStLoc(StLoc inst, TranslationContext context)
|
|
{
|
|
var translatedValue = Translate(inst.Value, typeHint: inst.Variable.Type);
|
|
if (inst.Variable.Kind == VariableKind.StackSlot && !loadedVariablesSet.Contains(inst.Variable)) {
|
|
// Stack slots in the ILAst have inaccurate types (e.g. System.Object for StackType.O)
|
|
// so we should replace them with more accurate types where possible:
|
|
if ((inst.Variable.IsSingleDefinition || IsOtherValueType(translatedValue.Type) || inst.Variable.StackType == StackType.Ref)
|
|
&& inst.Variable.StackType == translatedValue.Type.GetStackType()
|
|
&& translatedValue.Type.Kind != TypeKind.Null) {
|
|
inst.Variable.Type = translatedValue.Type;
|
|
} else if (inst.Value.MatchDefaultValue(out var type) && IsOtherValueType(type)) {
|
|
inst.Variable.Type = type;
|
|
}
|
|
}
|
|
return Assignment(ConvertVariable(inst.Variable).WithoutILInstruction(), translatedValue).WithILInstruction(inst);
|
|
|
|
bool IsOtherValueType(IType type)
|
|
{
|
|
return type.IsReferenceType == false && type.GetStackType() == StackType.O;
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitComp(Comp inst, TranslationContext context)
|
|
{
|
|
if (inst.LiftingKind == ComparisonLiftingKind.ThreeValuedLogic) {
|
|
if (inst.Kind == ComparisonKind.Equality && inst.Right.MatchLdcI4(0)) {
|
|
// lifted logic.not
|
|
var targetType = NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Boolean));
|
|
var arg = Translate(inst.Left, targetType).ConvertTo(targetType, this);
|
|
return new UnaryOperatorExpression(UnaryOperatorType.Not, arg.Expression)
|
|
.WithRR(new OperatorResolveResult(targetType, ExpressionType.Not, arg.ResolveResult))
|
|
.WithILInstruction(inst);
|
|
}
|
|
return ErrorExpression("Nullable comparisons with three-valued-logic not supported in C#");
|
|
}
|
|
if (inst.Kind.IsEqualityOrInequality()) {
|
|
bool negateOutput;
|
|
var result = TranslateCeq(inst, out negateOutput);
|
|
if (negateOutput)
|
|
return LogicNot(result).WithILInstruction(inst);
|
|
else
|
|
return result;
|
|
} else {
|
|
return TranslateComp(inst);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Translates the equality comparison between left and right.
|
|
/// </summary>
|
|
TranslatedExpression TranslateCeq(Comp inst, out bool negateOutput)
|
|
{
|
|
Debug.Assert(inst.Kind.IsEqualityOrInequality());
|
|
// Translate '(e as T) == null' to '!(e is T)'.
|
|
// This is necessary for correctness when T is a value type.
|
|
if (inst.Left.OpCode == OpCode.IsInst && inst.Right.OpCode == OpCode.LdNull) {
|
|
negateOutput = inst.Kind == ComparisonKind.Equality;
|
|
return IsType((IsInst)inst.Left);
|
|
} else if (inst.Right.OpCode == OpCode.IsInst && inst.Left.OpCode == OpCode.LdNull) {
|
|
negateOutput = inst.Kind == ComparisonKind.Equality;
|
|
return IsType((IsInst)inst.Right);
|
|
}
|
|
|
|
var left = Translate(inst.Left);
|
|
var right = Translate(inst.Right);
|
|
|
|
// Remove redundant bool comparisons
|
|
if (left.Type.IsKnownType(KnownTypeCode.Boolean)) {
|
|
if (inst.Right.MatchLdcI4(0)) {
|
|
// 'b == 0' => '!b'
|
|
// 'b != 0' => 'b'
|
|
negateOutput = inst.Kind == ComparisonKind.Equality;
|
|
return left;
|
|
}
|
|
if (inst.Right.MatchLdcI4(1)) {
|
|
// 'b == 1' => 'b'
|
|
// 'b != 1' => '!b'
|
|
negateOutput = inst.Kind == ComparisonKind.Inequality;
|
|
return left;
|
|
}
|
|
} else if (right.Type.IsKnownType(KnownTypeCode.Boolean)) {
|
|
if (inst.Left.MatchLdcI4(0)) {
|
|
// '0 == b' => '!b'
|
|
// '0 != b' => 'b'
|
|
negateOutput = inst.Kind == ComparisonKind.Equality;
|
|
return right;
|
|
}
|
|
if (inst.Left.MatchLdcI4(1)) {
|
|
// '1 == b' => 'b'
|
|
// '1 != b' => '!b'
|
|
negateOutput = inst.Kind == ComparisonKind.Inequality;
|
|
return right;
|
|
}
|
|
}
|
|
// Handle comparisons between unsafe pointers and null:
|
|
if (left.Type.Kind == TypeKind.Pointer && inst.Right.MatchLdcI(0)) {
|
|
negateOutput = false;
|
|
right = new NullReferenceExpression().WithRR(new ConstantResolveResult(SpecialType.NullType, null))
|
|
.WithILInstruction(inst.Right);
|
|
return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right)
|
|
.WithILInstruction(inst);
|
|
} else if (right.Type.Kind == TypeKind.Pointer && inst.Left.MatchLdcI(0)) {
|
|
negateOutput = false;
|
|
left = new NullReferenceExpression().WithRR(new ConstantResolveResult(SpecialType.NullType, null))
|
|
.WithILInstruction(inst.Left);
|
|
return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right)
|
|
.WithILInstruction(inst);
|
|
}
|
|
|
|
// Special case comparisons with enum and char literals
|
|
left = AdjustConstantExpressionToType(left, right.Type);
|
|
right = AdjustConstantExpressionToType(right, left.Type);
|
|
|
|
if (IsSpecialCasedReferenceComparisonWithNull(left, right)) {
|
|
// When comparing a string/delegate with null, the C# compiler generates a reference comparison.
|
|
negateOutput = false;
|
|
return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right)
|
|
.WithILInstruction(inst);
|
|
}
|
|
|
|
OperatorResolveResult rr;
|
|
if (left.Type.IsKnownType(KnownTypeCode.String) && right.Type.IsKnownType(KnownTypeCode.String)) {
|
|
rr = null; // it's a string comparison by-value, which is not a reference comparison
|
|
} else {
|
|
rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult)
|
|
as OperatorResolveResult;
|
|
}
|
|
if (rr == null || rr.IsError || rr.UserDefinedOperatorMethod != null
|
|
|| NullableType.GetUnderlyingType(rr.Operands[0].Type).GetStackType() != inst.InputType
|
|
|| !rr.Type.IsKnownType(KnownTypeCode.Boolean))
|
|
{
|
|
IType targetType;
|
|
if (inst.InputType == StackType.O) {
|
|
targetType = compilation.FindType(KnownTypeCode.Object);
|
|
} else {
|
|
var leftUType = NullableType.GetUnderlyingType(left.Type);
|
|
var rightUType = NullableType.GetUnderlyingType(right.Type);
|
|
if (leftUType.GetStackType() == inst.InputType && !leftUType.IsSmallIntegerType()) {
|
|
targetType = leftUType;
|
|
} else if (rightUType.GetStackType() == inst.InputType && !rightUType.IsSmallIntegerType()) {
|
|
targetType = rightUType;
|
|
} else {
|
|
targetType = compilation.FindType(inst.InputType.ToKnownTypeCode(leftUType.GetSign()));
|
|
}
|
|
}
|
|
if (inst.IsLifted) {
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
}
|
|
if (targetType.Equals(left.Type)) {
|
|
right = right.ConvertTo(targetType, this);
|
|
} else {
|
|
left = left.ConvertTo(targetType, this);
|
|
}
|
|
rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(),
|
|
left.ResolveResult, right.ResolveResult) as OperatorResolveResult;
|
|
if (rr == null || rr.IsError || rr.UserDefinedOperatorMethod != null
|
|
|| NullableType.GetUnderlyingType(rr.Operands[0].Type).GetStackType() != inst.InputType
|
|
|| !rr.Type.IsKnownType(KnownTypeCode.Boolean))
|
|
{
|
|
// If converting one input wasn't sufficient, convert both:
|
|
left = left.ConvertTo(targetType, this);
|
|
right = right.ConvertTo(targetType, this);
|
|
rr = new OperatorResolveResult(
|
|
compilation.FindType(KnownTypeCode.Boolean),
|
|
BinaryOperatorExpression.GetLinqNodeType(inst.Kind.ToBinaryOperatorType(), false),
|
|
left.ResolveResult, right.ResolveResult);
|
|
}
|
|
}
|
|
negateOutput = false;
|
|
return new BinaryOperatorExpression(left.Expression, inst.Kind.ToBinaryOperatorType(), right.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(rr);
|
|
}
|
|
|
|
bool IsSpecialCasedReferenceComparisonWithNull(TranslatedExpression lhs, TranslatedExpression rhs)
|
|
{
|
|
if (lhs.Type.Kind == TypeKind.Null)
|
|
ExtensionMethods.Swap(ref lhs, ref rhs);
|
|
return rhs.Type.Kind == TypeKind.Null
|
|
&& (lhs.Type.Kind == TypeKind.Delegate || lhs.Type.IsKnownType(KnownTypeCode.String));
|
|
}
|
|
|
|
ExpressionWithResolveResult CreateBuiltinBinaryOperator(
|
|
TranslatedExpression left, BinaryOperatorType type, TranslatedExpression right,
|
|
bool checkForOverflow = false)
|
|
{
|
|
return new BinaryOperatorExpression(left.Expression, type, right.Expression)
|
|
.WithRR(new OperatorResolveResult(
|
|
compilation.FindType(KnownTypeCode.Boolean),
|
|
BinaryOperatorExpression.GetLinqNodeType(type, checkForOverflow),
|
|
left.ResolveResult, right.ResolveResult));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Handle Comp instruction, operators other than equality/inequality.
|
|
/// </summary>
|
|
TranslatedExpression TranslateComp(Comp inst)
|
|
{
|
|
var op = inst.Kind.ToBinaryOperatorType();
|
|
var left = Translate(inst.Left);
|
|
var right = Translate(inst.Right);
|
|
|
|
if (left.Type.Kind == TypeKind.Pointer && right.Type.Kind == TypeKind.Pointer) {
|
|
return CreateBuiltinBinaryOperator(left, op, right)
|
|
.WithILInstruction(inst);
|
|
}
|
|
|
|
left = PrepareArithmeticArgument(left, inst.InputType, inst.Sign, inst.IsLifted);
|
|
right = PrepareArithmeticArgument(right, inst.InputType, inst.Sign, inst.IsLifted);
|
|
|
|
// Special case comparisons with enum and char literals
|
|
left = AdjustConstantExpressionToType(left, right.Type);
|
|
right = AdjustConstantExpressionToType(right, left.Type);
|
|
|
|
// attempt comparison without any additional casts
|
|
var rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult)
|
|
as OperatorResolveResult;
|
|
if (rr != null && !rr.IsError) {
|
|
IType compUType = NullableType.GetUnderlyingType(rr.Operands[0].Type);
|
|
if (compUType.GetSign() == inst.Sign && compUType.GetStackType() == inst.InputType) {
|
|
return new BinaryOperatorExpression(left.Expression, op, right.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(rr);
|
|
}
|
|
}
|
|
|
|
// Ensure the inputs have the correct sign:
|
|
KnownTypeCode inputType = KnownTypeCode.None;
|
|
switch (inst.InputType) {
|
|
case StackType.I: // In order to generate valid C# we need to treat (U)IntPtr as (U)Int64 in comparisons.
|
|
case StackType.I8:
|
|
inputType = inst.Sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64;
|
|
break;
|
|
case StackType.I4:
|
|
inputType = inst.Sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32;
|
|
break;
|
|
}
|
|
if (inputType != KnownTypeCode.None) {
|
|
IType targetType = compilation.FindType(inputType);
|
|
if (inst.IsLifted) {
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
}
|
|
left = left.ConvertTo(targetType, this);
|
|
right = right.ConvertTo(targetType, this);
|
|
}
|
|
return new BinaryOperatorExpression(left.Expression, op, right.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(compilation.FindType(TypeCode.Boolean),
|
|
BinaryOperatorExpression.GetLinqNodeType(op, false),
|
|
left.ResolveResult, right.ResolveResult));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitThreeValuedLogicAnd(ThreeValuedLogicAnd inst, TranslationContext context)
|
|
{
|
|
return HandleThreeValuedLogic(inst, BinaryOperatorType.BitwiseAnd, ExpressionType.And);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitThreeValuedLogicOr(ThreeValuedLogicOr inst, TranslationContext context)
|
|
{
|
|
return HandleThreeValuedLogic(inst, BinaryOperatorType.BitwiseOr, ExpressionType.Or);
|
|
}
|
|
|
|
TranslatedExpression HandleThreeValuedLogic(BinaryInstruction inst, BinaryOperatorType op, ExpressionType eop)
|
|
{
|
|
var left = Translate(inst.Left);
|
|
var right = Translate(inst.Right);
|
|
IType boolType = compilation.FindType(KnownTypeCode.Boolean);
|
|
IType nullableBoolType = NullableType.Create(compilation, boolType);
|
|
if (NullableType.IsNullable(left.Type)) {
|
|
left = left.ConvertTo(nullableBoolType, this);
|
|
if (NullableType.IsNullable(right.Type)) {
|
|
right = right.ConvertTo(nullableBoolType, this);
|
|
} else {
|
|
right = right.ConvertTo(boolType, this);
|
|
}
|
|
} else {
|
|
left = left.ConvertTo(boolType, this);
|
|
right = right.ConvertTo(nullableBoolType, this);
|
|
}
|
|
return new BinaryOperatorExpression(left.Expression, op, right.Expression)
|
|
.WithRR(new OperatorResolveResult(nullableBoolType, eop, null, true, new[] { left.ResolveResult, right.ResolveResult }))
|
|
.WithILInstruction(inst);
|
|
}
|
|
|
|
ExpressionWithResolveResult Assignment(TranslatedExpression left, TranslatedExpression right)
|
|
{
|
|
right = right.ConvertTo(left.Type, this, allowImplicitConversion: true);
|
|
return new AssignmentExpression(left.Expression, right.Expression)
|
|
.WithRR(new OperatorResolveResult(left.Type, ExpressionType.Assign, left.ResolveResult, right.ResolveResult));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitBinaryNumericInstruction(BinaryNumericInstruction inst, TranslationContext context)
|
|
{
|
|
switch (inst.Operator) {
|
|
case BinaryNumericOperator.Add:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.Add);
|
|
case BinaryNumericOperator.Sub:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.Subtract);
|
|
case BinaryNumericOperator.Mul:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.Multiply);
|
|
case BinaryNumericOperator.Div:
|
|
return HandlePointerSubtraction(inst)
|
|
?? HandleBinaryNumeric(inst, BinaryOperatorType.Divide);
|
|
case BinaryNumericOperator.Rem:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.Modulus);
|
|
case BinaryNumericOperator.BitAnd:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.BitwiseAnd);
|
|
case BinaryNumericOperator.BitOr:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.BitwiseOr);
|
|
case BinaryNumericOperator.BitXor:
|
|
return HandleBinaryNumeric(inst, BinaryOperatorType.ExclusiveOr);
|
|
case BinaryNumericOperator.ShiftLeft:
|
|
return HandleShift(inst, BinaryOperatorType.ShiftLeft);
|
|
case BinaryNumericOperator.ShiftRight:
|
|
return HandleShift(inst, BinaryOperatorType.ShiftRight);
|
|
default:
|
|
throw new ArgumentOutOfRangeException();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Translates pointer arithmetic:
|
|
/// ptr + int
|
|
/// int + ptr
|
|
/// ptr - int
|
|
/// Returns null if 'inst' is not performing pointer arithmetic.
|
|
/// This function not handle 'ptr - ptr'!
|
|
/// </summary>
|
|
TranslatedExpression? HandlePointerArithmetic(BinaryNumericInstruction inst, TranslatedExpression left, TranslatedExpression right)
|
|
{
|
|
if (!(inst.Operator == BinaryNumericOperator.Add || inst.Operator == BinaryNumericOperator.Sub))
|
|
return null;
|
|
if (inst.CheckForOverflow || inst.IsLifted)
|
|
return null;
|
|
if (!(inst.LeftInputType == StackType.I && inst.RightInputType == StackType.I))
|
|
return null;
|
|
PointerType pointerType;
|
|
ILInstruction byteOffsetInst;
|
|
TranslatedExpression byteOffsetExpr;
|
|
if (left.Type.Kind == TypeKind.Pointer) {
|
|
byteOffsetInst = inst.Right;
|
|
byteOffsetExpr = right;
|
|
pointerType = (PointerType)left.Type;
|
|
} else if (right.Type.Kind == TypeKind.Pointer) {
|
|
if (inst.Operator != BinaryNumericOperator.Add)
|
|
return null;
|
|
byteOffsetInst = inst.Left;
|
|
byteOffsetExpr = left;
|
|
pointerType = (PointerType)right.Type;
|
|
} else {
|
|
return null;
|
|
}
|
|
TranslatedExpression offsetExpr = GetPointerArithmeticOffset(byteOffsetInst, byteOffsetExpr, pointerType, inst.CheckForOverflow)
|
|
?? FallBackToBytePointer();
|
|
|
|
if (left.Type.Kind == TypeKind.Pointer) {
|
|
Debug.Assert(inst.Operator == BinaryNumericOperator.Add || inst.Operator == BinaryNumericOperator.Sub);
|
|
left = left.ConvertTo(pointerType, this);
|
|
right = offsetExpr;
|
|
} else {
|
|
Debug.Assert(inst.Operator == BinaryNumericOperator.Add);
|
|
Debug.Assert(right.Type.Kind == TypeKind.Pointer);
|
|
left = offsetExpr;
|
|
right = right.ConvertTo(pointerType, this);
|
|
}
|
|
var operatorType = inst.Operator == BinaryNumericOperator.Add ? BinaryOperatorType.Add : BinaryOperatorType.Subtract;
|
|
return new BinaryOperatorExpression(left, operatorType, right)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(
|
|
pointerType, BinaryOperatorExpression.GetLinqNodeType(operatorType, inst.CheckForOverflow),
|
|
left.ResolveResult, right.ResolveResult));
|
|
|
|
TranslatedExpression FallBackToBytePointer()
|
|
{
|
|
pointerType = new PointerType(compilation.FindType(KnownTypeCode.Byte));
|
|
return EnsureIntegerType(byteOffsetExpr);
|
|
}
|
|
}
|
|
|
|
TranslatedExpression EnsureIntegerType(TranslatedExpression expr)
|
|
{
|
|
if (!expr.Type.IsCSharpPrimitiveIntegerType()) {
|
|
// pointer arithmetic accepts all primitive integer types, but no enums etc.
|
|
StackType targetType = expr.Type.GetStackType() == StackType.I4 ? StackType.I4 : StackType.I8;
|
|
expr = expr.ConvertTo(
|
|
compilation.FindType(targetType.ToKnownTypeCode(expr.Type.GetSign())),
|
|
this);
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
TranslatedExpression? GetPointerArithmeticOffset(ILInstruction byteOffsetInst, TranslatedExpression byteOffsetExpr,
|
|
PointerType pointerType, bool checkForOverflow, bool unwrapZeroExtension = false)
|
|
{
|
|
var countOffsetInst = PointerArithmeticOffset.Detect(byteOffsetInst, pointerType,
|
|
checkForOverflow: checkForOverflow,
|
|
unwrapZeroExtension: unwrapZeroExtension);
|
|
if (countOffsetInst == null) {
|
|
return null;
|
|
}
|
|
if (countOffsetInst == byteOffsetInst) {
|
|
return EnsureIntegerType(byteOffsetExpr);
|
|
} else {
|
|
return EnsureIntegerType(Translate(countOffsetInst));
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Called for divisions, detect and handles the code pattern:
|
|
/// div(sub(a, b), sizeof(T))
|
|
/// when a,b are of type T*.
|
|
/// This is what the C# compiler generates for pointer subtraction.
|
|
/// </summary>
|
|
TranslatedExpression? HandlePointerSubtraction(BinaryNumericInstruction inst)
|
|
{
|
|
Debug.Assert(inst.Operator == BinaryNumericOperator.Div);
|
|
if (inst.CheckForOverflow || inst.LeftInputType != StackType.I)
|
|
return null;
|
|
if (!(inst.Left is BinaryNumericInstruction sub && sub.Operator == BinaryNumericOperator.Sub))
|
|
return null;
|
|
if (sub.CheckForOverflow)
|
|
return null;
|
|
// First, attempt to parse the 'sizeof' on the RHS
|
|
IType elementType;
|
|
if (inst.Right.MatchLdcI(out long elementSize)) {
|
|
elementType = null;
|
|
// OK, might be pointer subtraction if the element size matches
|
|
} else if (inst.Right.UnwrapConv(ConversionKind.SignExtend).MatchSizeOf(out elementType)) {
|
|
// OK, might be pointer subtraction if the element type matches
|
|
} else {
|
|
return null;
|
|
}
|
|
var left = Translate(sub.Left);
|
|
var right = Translate(sub.Right);
|
|
IType pointerType;
|
|
if (IsMatchingPointerType(left.Type)) {
|
|
pointerType = left.Type;
|
|
} else if (IsMatchingPointerType(right.Type)) {
|
|
pointerType = right.Type;
|
|
} else if (elementSize == 1 && left.Type.Kind == TypeKind.Pointer && right.Type.Kind == TypeKind.Pointer) {
|
|
// two pointers (neither matching), we're dividing by 1 (debug builds only),
|
|
// -> subtract two byte pointers
|
|
pointerType = new PointerType(compilation.FindType(KnownTypeCode.Byte));
|
|
} else {
|
|
// neither is a matching pointer type
|
|
// -> not a pointer subtraction after all
|
|
return null;
|
|
}
|
|
// We got a pointer subtraction.
|
|
left = left.ConvertTo(pointerType, this);
|
|
right = right.ConvertTo(pointerType, this);
|
|
var rr = new OperatorResolveResult(
|
|
compilation.FindType(KnownTypeCode.Int64),
|
|
ExpressionType.Subtract,
|
|
left.ResolveResult, right.ResolveResult
|
|
);
|
|
var result = new BinaryOperatorExpression(
|
|
left.Expression, BinaryOperatorType.Subtract, right.Expression
|
|
).WithILInstruction(new[] { inst, sub })
|
|
.WithRR(rr);
|
|
return result;
|
|
|
|
bool IsMatchingPointerType(IType type)
|
|
{
|
|
if (type is PointerType pt) {
|
|
if (elementType != null)
|
|
return elementType.Equals(pt.ElementType);
|
|
else if (elementSize > 0)
|
|
return PointerArithmeticOffset.ComputeSizeOf(pt.ElementType) == elementSize;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
TranslatedExpression HandleBinaryNumeric(BinaryNumericInstruction inst, BinaryOperatorType op)
|
|
{
|
|
var resolverWithOverflowCheck = resolver.WithCheckForOverflow(inst.CheckForOverflow);
|
|
var left = Translate(inst.Left);
|
|
var right = Translate(inst.Right);
|
|
|
|
if (left.Type.Kind == TypeKind.Pointer || right.Type.Kind == TypeKind.Pointer) {
|
|
var ptrResult = HandlePointerArithmetic(inst, left, right);
|
|
if (ptrResult != null)
|
|
return ptrResult.Value;
|
|
}
|
|
|
|
left = PrepareArithmeticArgument(left, inst.LeftInputType, inst.Sign, inst.IsLifted);
|
|
right = PrepareArithmeticArgument(right, inst.RightInputType, inst.Sign, inst.IsLifted);
|
|
|
|
if (op == BinaryOperatorType.Subtract && inst.Left.MatchLdcI(0)) {
|
|
IType rightUType = NullableType.GetUnderlyingType(right.Type);
|
|
if (rightUType.IsKnownType(KnownTypeCode.Int32) || rightUType.IsKnownType(KnownTypeCode.Int64) || rightUType.IsCSharpSmallIntegerType()) {
|
|
// unary minus is supported on signed int and long, and on the small integer types (since they promote to int)
|
|
var uoe = new UnaryOperatorExpression(UnaryOperatorType.Minus, right.Expression);
|
|
uoe.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation);
|
|
var resultType = rightUType.IsKnownType(KnownTypeCode.Int64) ? rightUType : compilation.FindType(KnownTypeCode.Int32);
|
|
if (inst.IsLifted)
|
|
resultType = NullableType.Create(compilation, resultType);
|
|
return uoe.WithILInstruction(inst).WithRR(new OperatorResolveResult(
|
|
resultType,
|
|
inst.CheckForOverflow ? ExpressionType.NegateChecked : ExpressionType.Negate,
|
|
right.ResolveResult));
|
|
}
|
|
}
|
|
|
|
if (op.IsBitwise() && (left.Type.Kind == TypeKind.Enum || right.Type.Kind == TypeKind.Enum)) {
|
|
left = AdjustConstantExpressionToType(left, right.Type);
|
|
right = AdjustConstantExpressionToType(right, left.Type);
|
|
}
|
|
|
|
var rr = resolverWithOverflowCheck.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult);
|
|
if (rr.IsError || NullableType.GetUnderlyingType(rr.Type).GetStackType() != inst.UnderlyingResultType
|
|
|| !IsCompatibleWithSign(left.Type, inst.Sign) || !IsCompatibleWithSign(right.Type, inst.Sign))
|
|
{
|
|
// Left and right operands are incompatible, so convert them to a common type
|
|
StackType targetStackType = inst.UnderlyingResultType == StackType.I ? StackType.I8 : inst.UnderlyingResultType;
|
|
IType targetType = compilation.FindType(targetStackType.ToKnownTypeCode(inst.Sign));
|
|
left = left.ConvertTo(NullableType.IsNullable(left.Type) ? NullableType.Create(compilation, targetType) : targetType, this);
|
|
right = right.ConvertTo(NullableType.IsNullable(right.Type) ? NullableType.Create(compilation, targetType) : targetType, this);
|
|
rr = resolverWithOverflowCheck.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult);
|
|
}
|
|
var resultExpr = new BinaryOperatorExpression(left.Expression, op, right.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(rr);
|
|
if (BinaryOperatorMightCheckForOverflow(op))
|
|
resultExpr.Expression.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation);
|
|
return resultExpr;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Handle oversized arguments needing truncation; and avoid IntPtr/pointers in arguments.
|
|
/// </summary>
|
|
TranslatedExpression PrepareArithmeticArgument(TranslatedExpression arg, StackType argStackType, Sign sign, bool isLifted)
|
|
{
|
|
if (isLifted && !NullableType.IsNullable(arg.Type)) {
|
|
isLifted = false; // don't cast to nullable if this input wasn't already nullable
|
|
}
|
|
IType argUType = isLifted ? NullableType.GetUnderlyingType(arg.Type) : arg.Type;
|
|
if (argStackType.IsIntegerType() && argStackType.GetSize() < argUType.GetSize()) {
|
|
// If the argument is oversized (needs truncation to match stack size of its ILInstruction),
|
|
// perform the truncation now.
|
|
IType targetType = compilation.FindType(argStackType.ToKnownTypeCode(sign));
|
|
argUType = targetType;
|
|
if (isLifted)
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
arg = arg.ConvertTo(targetType, this);
|
|
}
|
|
if (argUType.GetStackType() == StackType.I) {
|
|
// None of the operators we might want to apply are supported by IntPtr/UIntPtr.
|
|
// Also, pointer arithmetic has different semantics (works in number of elements, not bytes).
|
|
// So any inputs of size StackType.I must be converted to long/ulong.
|
|
IType targetType = compilation.FindType(StackType.I8.ToKnownTypeCode(sign));
|
|
if (isLifted)
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
arg = arg.ConvertTo(targetType, this);
|
|
}
|
|
return arg;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets whether <paramref name="type"/> has the specified <paramref name="sign"/>.
|
|
/// If <paramref name="sign"/> is None, always returns true.
|
|
/// </summary>
|
|
static bool IsCompatibleWithSign(IType type, Sign sign)
|
|
{
|
|
return sign == Sign.None || NullableType.GetUnderlyingType(type).GetSign() == sign;
|
|
}
|
|
|
|
static bool BinaryOperatorMightCheckForOverflow(BinaryOperatorType op)
|
|
{
|
|
switch (op) {
|
|
case BinaryOperatorType.BitwiseAnd:
|
|
case BinaryOperatorType.BitwiseOr:
|
|
case BinaryOperatorType.ExclusiveOr:
|
|
case BinaryOperatorType.ShiftLeft:
|
|
case BinaryOperatorType.ShiftRight:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
TranslatedExpression HandleShift(BinaryNumericInstruction inst, BinaryOperatorType op)
|
|
{
|
|
var left = Translate(inst.Left);
|
|
var right = Translate(inst.Right);
|
|
|
|
Sign sign = inst.Sign;
|
|
var leftUType = NullableType.GetUnderlyingType(left.Type);
|
|
if (leftUType.IsCSharpSmallIntegerType() && sign != Sign.Unsigned && inst.UnderlyingResultType == StackType.I4) {
|
|
// With small integer types, C# will promote to int and perform signed shifts.
|
|
// We thus don't need any casts in this case.
|
|
} else {
|
|
// Insert cast to target type.
|
|
if (sign == Sign.None) {
|
|
// if we don't need a specific sign, prefer keeping that of the input:
|
|
sign = leftUType.GetSign();
|
|
}
|
|
IType targetType;
|
|
if (inst.UnderlyingResultType == StackType.I4) {
|
|
targetType = compilation.FindType(sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32);
|
|
} else {
|
|
targetType = compilation.FindType(sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64);
|
|
}
|
|
if (NullableType.IsNullable(left.Type)) {
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
}
|
|
left = left.ConvertTo(targetType, this);
|
|
}
|
|
|
|
// Shift operators in C# always expect type 'int' on the right-hand-side
|
|
if (NullableType.IsNullable(right.Type)) {
|
|
right = right.ConvertTo(NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Int32)), this);
|
|
} else {
|
|
right = right.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this);
|
|
}
|
|
|
|
return new BinaryOperatorExpression(left.Expression, op, right.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(resolver.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitUserDefinedCompoundAssign(UserDefinedCompoundAssign inst, TranslationContext context)
|
|
{
|
|
var target = Translate(inst.Target);
|
|
if (inst.Method.Parameters.Count == 2) {
|
|
var value = Translate(inst.Value).ConvertTo(inst.Method.Parameters[1].Type, this);
|
|
AssignmentOperatorType? op = GetAssignmentOperatorTypeFromMetadataName(inst.Method.Name);
|
|
Debug.Assert(op != null);
|
|
|
|
return new AssignmentExpression(target, op.Value, value)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(inst.Method.ReturnType, AssignmentExpression.GetLinqNodeType(op.Value, false), inst.Method, inst.IsLifted, new[] { target.ResolveResult, value.ResolveResult }));
|
|
} else {
|
|
UnaryOperatorType? op = GetUnaryOperatorTypeFromMetadataName(inst.Method.Name, inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToOldValue);
|
|
Debug.Assert(op != null);
|
|
|
|
return new UnaryOperatorExpression(op.Value, target)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(inst.Method.ReturnType, UnaryOperatorExpression.GetLinqNodeType(op.Value, false), inst.Method, inst.IsLifted, new[] { target.ResolveResult }));
|
|
}
|
|
}
|
|
|
|
internal static AssignmentOperatorType? GetAssignmentOperatorTypeFromMetadataName(string name)
|
|
{
|
|
switch (name) {
|
|
case "op_Addition":
|
|
return AssignmentOperatorType.Add;
|
|
case "op_Subtraction":
|
|
return AssignmentOperatorType.Subtract;
|
|
case "op_Multiply":
|
|
return AssignmentOperatorType.Multiply;
|
|
case "op_Division":
|
|
return AssignmentOperatorType.Divide;
|
|
case "op_Modulus":
|
|
return AssignmentOperatorType.Modulus;
|
|
case "op_BitwiseAnd":
|
|
return AssignmentOperatorType.BitwiseAnd;
|
|
case "op_BitwiseOr":
|
|
return AssignmentOperatorType.BitwiseOr;
|
|
case "op_ExclusiveOr":
|
|
return AssignmentOperatorType.ExclusiveOr;
|
|
case "op_LeftShift":
|
|
return AssignmentOperatorType.ShiftLeft;
|
|
case "op_RightShift":
|
|
return AssignmentOperatorType.ShiftRight;
|
|
default:
|
|
return null;
|
|
}
|
|
}
|
|
|
|
internal static UnaryOperatorType? GetUnaryOperatorTypeFromMetadataName(string name, bool isPostfix)
|
|
{
|
|
switch (name) {
|
|
case "op_Increment":
|
|
return isPostfix ? UnaryOperatorType.PostIncrement : UnaryOperatorType.Increment;
|
|
case "op_Decrement":
|
|
return isPostfix ? UnaryOperatorType.PostDecrement : UnaryOperatorType.Decrement;
|
|
default:
|
|
return null;
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitNumericCompoundAssign(NumericCompoundAssign inst, TranslationContext context)
|
|
{
|
|
switch (inst.Operator) {
|
|
case BinaryNumericOperator.Add:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.Add);
|
|
case BinaryNumericOperator.Sub:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.Subtract);
|
|
case BinaryNumericOperator.Mul:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.Multiply);
|
|
case BinaryNumericOperator.Div:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.Divide);
|
|
case BinaryNumericOperator.Rem:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.Modulus);
|
|
case BinaryNumericOperator.BitAnd:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.BitwiseAnd);
|
|
case BinaryNumericOperator.BitOr:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.BitwiseOr);
|
|
case BinaryNumericOperator.BitXor:
|
|
return HandleCompoundAssignment(inst, AssignmentOperatorType.ExclusiveOr);
|
|
case BinaryNumericOperator.ShiftLeft:
|
|
return HandleCompoundShift(inst, AssignmentOperatorType.ShiftLeft);
|
|
case BinaryNumericOperator.ShiftRight:
|
|
return HandleCompoundShift(inst, AssignmentOperatorType.ShiftRight);
|
|
default:
|
|
throw new ArgumentOutOfRangeException();
|
|
}
|
|
}
|
|
|
|
TranslatedExpression HandleCompoundAssignment(NumericCompoundAssign inst, AssignmentOperatorType op)
|
|
{
|
|
var target = Translate(inst.Target);
|
|
var value = Translate(inst.Value);
|
|
value = PrepareArithmeticArgument(value, inst.RightInputType, inst.Sign, inst.IsLifted);
|
|
|
|
|
|
TranslatedExpression resultExpr;
|
|
if (inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToOldValue) {
|
|
Debug.Assert(op == AssignmentOperatorType.Add || op == AssignmentOperatorType.Subtract);
|
|
Debug.Assert(value.ResolveResult.IsCompileTimeConstant && 1.Equals(value.ResolveResult.ConstantValue));
|
|
UnaryOperatorType unary;
|
|
ExpressionType exprType;
|
|
if (op == AssignmentOperatorType.Add) {
|
|
unary = UnaryOperatorType.PostIncrement;
|
|
exprType = ExpressionType.PostIncrementAssign;
|
|
} else {
|
|
unary = UnaryOperatorType.PostDecrement;
|
|
exprType = ExpressionType.PostDecrementAssign;
|
|
}
|
|
resultExpr = new UnaryOperatorExpression(unary, target)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(target.Type, exprType, target.ResolveResult));
|
|
} else {
|
|
switch (op) {
|
|
case AssignmentOperatorType.Add:
|
|
case AssignmentOperatorType.Subtract:
|
|
if (target.Type.Kind == TypeKind.Pointer) {
|
|
var pao = GetPointerArithmeticOffset(inst.Value, value, (PointerType)target.Type, inst.CheckForOverflow);
|
|
if (pao != null) {
|
|
value = pao.Value;
|
|
} else {
|
|
value.Expression.AddChild(new Comment("ILSpy Error: GetPointerArithmeticOffset() failed", CommentType.MultiLine), Roles.Comment);
|
|
}
|
|
} else {
|
|
IType targetType = NullableType.GetUnderlyingType(target.Type).GetEnumUnderlyingType();
|
|
if (NullableType.IsNullable(value.Type)) {
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
}
|
|
value = value.ConvertTo(targetType, this, inst.CheckForOverflow, allowImplicitConversion: true);
|
|
}
|
|
break;
|
|
case AssignmentOperatorType.Multiply:
|
|
case AssignmentOperatorType.Divide:
|
|
case AssignmentOperatorType.Modulus:
|
|
case AssignmentOperatorType.BitwiseAnd:
|
|
case AssignmentOperatorType.BitwiseOr:
|
|
case AssignmentOperatorType.ExclusiveOr: {
|
|
IType targetType = NullableType.GetUnderlyingType(target.Type);
|
|
if (NullableType.IsNullable(value.Type)) {
|
|
targetType = NullableType.Create(compilation, targetType);
|
|
}
|
|
value = value.ConvertTo(targetType, this, inst.CheckForOverflow, allowImplicitConversion: true);
|
|
break;
|
|
}
|
|
}
|
|
resultExpr = new AssignmentExpression(target.Expression, op, value.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(target.Type, AssignmentExpression.GetLinqNodeType(op, inst.CheckForOverflow), target.ResolveResult, value.ResolveResult));
|
|
}
|
|
if (AssignmentOperatorMightCheckForOverflow(op))
|
|
resultExpr.Expression.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation);
|
|
return resultExpr;
|
|
}
|
|
|
|
TranslatedExpression HandleCompoundShift(NumericCompoundAssign inst, AssignmentOperatorType op)
|
|
{
|
|
Debug.Assert(inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToNewValue);
|
|
var target = Translate(inst.Target);
|
|
var value = Translate(inst.Value);
|
|
|
|
// Shift operators in C# always expect type 'int' on the right-hand-side
|
|
if (NullableType.IsNullable(value.Type)) {
|
|
value = value.ConvertTo(NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Int32)), this);
|
|
} else {
|
|
value = value.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this);
|
|
}
|
|
|
|
return new AssignmentExpression(target.Expression, op, value.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(resolver.ResolveAssignment(op, target.ResolveResult, value.ResolveResult));
|
|
}
|
|
|
|
static bool AssignmentOperatorMightCheckForOverflow(AssignmentOperatorType op)
|
|
{
|
|
switch (op) {
|
|
case AssignmentOperatorType.BitwiseAnd:
|
|
case AssignmentOperatorType.BitwiseOr:
|
|
case AssignmentOperatorType.ExclusiveOr:
|
|
case AssignmentOperatorType.ShiftLeft:
|
|
case AssignmentOperatorType.ShiftRight:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitConv(Conv inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
IType inputType = NullableType.GetUnderlyingType(arg.Type);
|
|
StackType inputStackType = inst.InputType;
|
|
// Note: we're dealing with two conversions here:
|
|
// a) the implicit conversion from `inputType` to `inputStackType`
|
|
// (due to the ExpressionBuilder post-condition being flexible with regards to the integer type width)
|
|
// If this is a widening conversion, I'm calling the argument C# type "oversized".
|
|
// If this is a narrowing conversion, I'm calling the argument C# type "undersized".
|
|
// b) the actual conversion instruction from `inputStackType` to `inst.TargetType`
|
|
|
|
// Also, we need to be very careful with regards to the conversions we emit:
|
|
// In C#, zero vs. sign-extension depends on the input type,
|
|
// but in the ILAst conv instruction it depends on the output type.
|
|
// However, in the conv.ovf instructions, the .NET runtime behavior seems to depend on the input type,
|
|
// in violation of the ECMA-335 spec!
|
|
|
|
IType GetType(KnownTypeCode typeCode)
|
|
{
|
|
IType type = compilation.FindType(typeCode);
|
|
if (inst.IsLifted)
|
|
type = NullableType.Create(compilation, type);
|
|
return type;
|
|
}
|
|
|
|
if (inst.CheckForOverflow || inst.Kind == ConversionKind.IntToFloat) {
|
|
// We need to first convert the argument to the expected sign.
|
|
// We also need to perform any input narrowing conversion so that it doesn't get mixed up with the overflow check.
|
|
Debug.Assert(inst.InputSign != Sign.None);
|
|
if (inputType.GetSize() > inputStackType.GetSize() || inputType.GetSign() != inst.InputSign) {
|
|
arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(inst.InputSign)), this);
|
|
}
|
|
// Because casts with overflow check match C# semantics (zero/sign-extension depends on source type),
|
|
// we can just directly cast to the target type.
|
|
return arg.ConvertTo(GetType(inst.TargetType.ToKnownTypeCode()), this, inst.CheckForOverflow)
|
|
.WithILInstruction(inst);
|
|
}
|
|
|
|
switch (inst.Kind) {
|
|
case ConversionKind.StartGCTracking:
|
|
// A "start gc tracking" conversion is inserted in the ILAst whenever
|
|
// some instruction expects a managed pointer, but we pass an unmanaged pointer.
|
|
// We'll leave the C#-level conversion (from T* to ref T) to the consumer that expects the managed pointer.
|
|
return arg;
|
|
case ConversionKind.StopGCTracking:
|
|
if (inputType.Kind == TypeKind.ByReference) {
|
|
// cast to corresponding pointer type:
|
|
var pointerType = new PointerType(((ByReferenceType)inputType).ElementType);
|
|
return arg.ConvertTo(pointerType, this).WithILInstruction(inst);
|
|
} else {
|
|
// ConversionKind.StopGCTracking should only be used with managed references,
|
|
// but it's possible that we're supposed to stop tracking something we just started to track.
|
|
return arg;
|
|
}
|
|
case ConversionKind.SignExtend:
|
|
// We just need to ensure the input type before the conversion is signed.
|
|
// Also, if the argument was translated into an oversized C# type,
|
|
// we need to perform the truncatation to the input stack type.
|
|
if (inputType.GetSign() != Sign.Signed || ValueMightBeOversized(arg.ResolveResult, inputStackType)) {
|
|
// Note that an undersized C# type is handled just fine:
|
|
// If it is unsigned we'll zero-extend it to the width of the inputStackType here,
|
|
// and it is signed we just combine the two sign-extensions into a single sign-extending conversion.
|
|
arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(Sign.Signed)), this);
|
|
}
|
|
// Then, we can just return the argument as-is: the ExpressionBuilder post-condition allows us
|
|
// to force our parent instruction to handle the actual sign-extension conversion.
|
|
// (our caller may have more information to pick a better fitting target type)
|
|
return arg.WithILInstruction(inst);
|
|
case ConversionKind.ZeroExtend:
|
|
// If overflow check cannot fail, handle this just like sign extension (except for swapped signs)
|
|
if (inputType.GetSign() != Sign.Unsigned || inputType.GetSize() > inputStackType.GetSize()) {
|
|
arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(Sign.Unsigned)), this);
|
|
}
|
|
return arg.WithILInstruction(inst);
|
|
case ConversionKind.Nop:
|
|
// no need to generate any C# code for a nop conversion
|
|
return arg.WithILInstruction(inst);
|
|
case ConversionKind.Truncate:
|
|
// Note: there are three sizes involved here:
|
|
// A = inputType.GetSize()
|
|
// B = inputStackType.GetSize()
|
|
// C = inst.TargetType.GetSize().
|
|
// We know that C < B (otherwise this wouldn't be the truncation case).
|
|
// 1) If C < B < A, we just combine the two truncations into one.
|
|
// 2) If C < B = A, there's no input conversion, just the truncation
|
|
// 3) If C <= A < B, all the extended bits get removed again by the truncation.
|
|
// 4) If A < C < B, some extended bits remain even after truncation.
|
|
// In cases 1-3, the overall conversion is a truncation or no-op.
|
|
// In case 4, the overall conversion is a zero/sign extension, but to a smaller
|
|
// size than the original conversion.
|
|
if (inst.TargetType.IsSmallIntegerType()) {
|
|
// If the target type is a small integer type, IL will implicitly sign- or zero-extend
|
|
// the result after the truncation back to StackType.I4.
|
|
// (which means there's actually 3 conversions involved!)
|
|
// Note that we must handle truncation to small integer types ourselves:
|
|
// our caller only sees the StackType.I4 and doesn't know to truncate to the small type.
|
|
|
|
if (inputType.GetSize() <= inst.TargetType.GetSize() && inputType.GetSign() == inst.TargetType.GetSign()) {
|
|
// There's no actual truncation involved, and the result of the Conv instruction is extended
|
|
// the same way as the original instruction
|
|
// -> we can return arg directly
|
|
return arg.WithILInstruction(inst);
|
|
} else {
|
|
// We need to actually truncate; *or* we need to change the sign for the remaining extension to I4.
|
|
goto default; // Emit simple cast to inst.TargetType
|
|
}
|
|
} else {
|
|
Debug.Assert(inst.TargetType.GetSize() == inst.UnderlyingResultType.GetSize());
|
|
// For non-small integer types, we can let the whole unchecked truncation
|
|
// get handled by our caller (using the ExpressionBuilder post-condition).
|
|
|
|
// Case 4 (left-over extension from implicit conversion) can also be handled by our caller.
|
|
return arg.WithILInstruction(inst);
|
|
}
|
|
default: {
|
|
// We need to convert to inst.TargetType, or to an equivalent type.
|
|
IType targetType;
|
|
if (inst.TargetType == NullableType.GetUnderlyingType(context.TypeHint).ToPrimitiveType()
|
|
&& NullableType.IsNullable(context.TypeHint) == inst.IsLifted)
|
|
{
|
|
targetType = context.TypeHint;
|
|
} else {
|
|
targetType = GetType(inst.TargetType.ToKnownTypeCode());
|
|
}
|
|
return arg.ConvertTo(targetType, this, inst.CheckForOverflow)
|
|
.WithILInstruction(inst);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets whether the ResolveResult computes a value that might be oversized for the specified stack type.
|
|
/// </summary>
|
|
bool ValueMightBeOversized(ResolveResult rr, StackType stackType)
|
|
{
|
|
IType inputType = NullableType.GetUnderlyingType(rr.Type);
|
|
if (inputType.GetSize() <= stackType.GetSize()) {
|
|
// The input type is smaller or equal to the stack type,
|
|
// it can't be an oversized value.
|
|
return false;
|
|
}
|
|
if (rr is OperatorResolveResult orr) {
|
|
if (stackType == StackType.I && orr.OperatorType == ExpressionType.Subtract
|
|
&& orr.Operands.Count == 2
|
|
&& orr.Operands[0].Type.Kind == TypeKind.Pointer
|
|
&& orr.Operands[1].Type.Kind == TypeKind.Pointer)
|
|
{
|
|
// Even though a pointer subtraction produces a value of type long in C#,
|
|
// the value will always fit in a native int.
|
|
return false;
|
|
}
|
|
}
|
|
// We don't have any information about the value, so it might be oversized.
|
|
return true;
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitCall(Call inst, TranslationContext context)
|
|
{
|
|
return WrapInRef(new CallBuilder(this, typeSystem, settings).Build(inst), inst.Method.ReturnType);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitCallVirt(CallVirt inst, TranslationContext context)
|
|
{
|
|
return WrapInRef(new CallBuilder(this, typeSystem, settings).Build(inst), inst.Method.ReturnType);
|
|
}
|
|
|
|
TranslatedExpression WrapInRef(TranslatedExpression expr, IType type)
|
|
{
|
|
if (type.Kind == TypeKind.ByReference) {
|
|
return new DirectionExpression(FieldDirection.Ref, expr.Expression)
|
|
.WithoutILInstruction()
|
|
.WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false));
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
internal bool IsCurrentOrContainingType(ITypeDefinition type)
|
|
{
|
|
var currentTypeDefinition = decompilationContext.CurrentTypeDefinition;
|
|
while (currentTypeDefinition != null) {
|
|
if (type == currentTypeDefinition)
|
|
return true;
|
|
currentTypeDefinition = currentTypeDefinition.DeclaringTypeDefinition;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
internal ExpressionWithResolveResult TranslateFunction(IType delegateType, ILFunction function)
|
|
{
|
|
var method = function.Method?.MemberDefinition as IMethod;
|
|
|
|
// Create AnonymousMethodExpression and prepare parameters
|
|
AnonymousMethodExpression ame = new AnonymousMethodExpression();
|
|
ame.IsAsync = function.IsAsync;
|
|
ame.Parameters.AddRange(MakeParameters(function.Parameters, function));
|
|
ame.HasParameterList = ame.Parameters.Count > 0;
|
|
var targetTS = method == null ? typeSystem : typeSystem.GetSpecializingTypeSystem(method.Substitution);
|
|
StatementBuilder builder = new StatementBuilder(targetTS, this.decompilationContext, function, settings, cancellationToken);
|
|
var body = builder.ConvertAsBlock(function.Body);
|
|
|
|
Comment prev = null;
|
|
foreach (string warning in function.Warnings) {
|
|
body.InsertChildAfter(prev, prev = new Comment(warning), Roles.Comment);
|
|
}
|
|
|
|
bool isLambda = false;
|
|
if (ame.Parameters.Any(p => p.Type.IsNull)) {
|
|
// if there is an anonymous type involved, we are forced to use a lambda expression.
|
|
isLambda = true;
|
|
} else if (ame.Parameters.All(p => p.ParameterModifier == ParameterModifier.None)) {
|
|
// otherwise use lambda only if an expression lambda is possible
|
|
isLambda = (body.Statements.Count == 1 && body.Statements.Single() is ReturnStatement);
|
|
}
|
|
// Remove the parameter list from an AnonymousMethodExpression if the parameters are not used in the method body
|
|
var parameterReferencingIdentifiers =
|
|
from ident in body.Descendants.OfType<IdentifierExpression>()
|
|
let v = ident.GetILVariable()
|
|
where v != null && v.Function == function && v.Kind == VariableKind.Parameter
|
|
select ident;
|
|
if (!isLambda && !parameterReferencingIdentifiers.Any()) {
|
|
ame.Parameters.Clear();
|
|
ame.HasParameterList = false;
|
|
}
|
|
|
|
Expression replacement;
|
|
IType inferredReturnType;
|
|
if (isLambda) {
|
|
LambdaExpression lambda = new LambdaExpression();
|
|
lambda.IsAsync = ame.IsAsync;
|
|
lambda.CopyAnnotationsFrom(ame);
|
|
ame.Parameters.MoveTo(lambda.Parameters);
|
|
if (body.Statements.Count == 1 && body.Statements.Single() is ReturnStatement returnStmt) {
|
|
lambda.Body = returnStmt.Expression.Detach();
|
|
inferredReturnType = lambda.Body.GetResolveResult().Type;
|
|
} else {
|
|
lambda.Body = body;
|
|
inferredReturnType = InferReturnType(body);
|
|
}
|
|
replacement = lambda;
|
|
} else {
|
|
ame.Body = body;
|
|
inferredReturnType = InferReturnType(body);
|
|
replacement = ame;
|
|
}
|
|
if (ame.IsAsync) {
|
|
inferredReturnType = GetTaskType(inferredReturnType);
|
|
}
|
|
|
|
var rr = new DecompiledLambdaResolveResult(
|
|
function, delegateType, inferredReturnType,
|
|
hasParameterList: isLambda || ame.HasParameterList,
|
|
isAnonymousMethod: !isLambda,
|
|
isImplicitlyTyped: ame.Parameters.Any(p => p.Type.IsNull));
|
|
|
|
TranslatedExpression translatedLambda = replacement.WithILInstruction(function).WithRR(rr);
|
|
return new CastExpression(ConvertType(delegateType), translatedLambda)
|
|
.WithRR(new ConversionResolveResult(delegateType, rr, LambdaConversion.Instance));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitILFunction(ILFunction function, TranslationContext context)
|
|
{
|
|
return TranslateFunction(function.DelegateType, function)
|
|
.WithILInstruction(function);
|
|
}
|
|
|
|
IType InferReturnType(BlockStatement body)
|
|
{
|
|
var returnExpressions = new List<ResolveResult>();
|
|
CollectReturnExpressions(body);
|
|
var ti = new TypeInference(compilation, resolver.conversions);
|
|
return ti.GetBestCommonType(returnExpressions, out _);
|
|
// Failure to infer a return type does not make the lambda invalid,
|
|
// so we can ignore the 'success' value
|
|
|
|
void CollectReturnExpressions(AstNode node)
|
|
{
|
|
if (node is ReturnStatement ret) {
|
|
if (!ret.Expression.IsNull) {
|
|
returnExpressions.Add(ret.Expression.GetResolveResult());
|
|
}
|
|
} else if (node is LambdaExpression || node is AnonymousMethodExpression) {
|
|
// do not recurse into nested lambdas
|
|
return;
|
|
}
|
|
foreach (var child in node.Children) {
|
|
CollectReturnExpressions(child);
|
|
}
|
|
}
|
|
}
|
|
|
|
IType GetTaskType(IType resultType)
|
|
{
|
|
if (resultType.Kind == TypeKind.Unknown)
|
|
return SpecialType.UnknownType;
|
|
if (resultType.Kind == TypeKind.Void)
|
|
return compilation.FindType(KnownTypeCode.Task);
|
|
|
|
ITypeDefinition def = compilation.FindType(KnownTypeCode.TaskOfT).GetDefinition();
|
|
if (def != null)
|
|
return new ParameterizedType(def, new[] { resultType });
|
|
else
|
|
return SpecialType.UnknownType;
|
|
}
|
|
|
|
IEnumerable<ParameterDeclaration> MakeParameters(IReadOnlyList<IParameter> parameters, ILFunction function)
|
|
{
|
|
var variables = function.Variables.Where(v => v.Kind == VariableKind.Parameter).ToDictionary(v => v.Index);
|
|
int i = 0;
|
|
foreach (var parameter in parameters) {
|
|
var pd = astBuilder.ConvertParameter(parameter);
|
|
if (settings.AnonymousTypes && parameter.Type.ContainsAnonymousType())
|
|
pd.Type = null;
|
|
ILVariable v;
|
|
if (variables.TryGetValue(i, out v))
|
|
pd.AddAnnotation(new ILVariableResolveResult(v, parameters[i].Type));
|
|
yield return pd;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
internal TranslatedExpression TranslateTarget(ILInstruction target, bool nonVirtualInvocation,
|
|
bool memberStatic, IType memberDeclaringType)
|
|
{
|
|
// If references are missing member.IsStatic might not be set correctly.
|
|
// Additionally check target for null, in order to avoid a crash.
|
|
if (!memberStatic && target != null) {
|
|
if (nonVirtualInvocation && target.MatchLdThis() && memberDeclaringType.GetDefinition() != resolver.CurrentTypeDefinition) {
|
|
return new BaseReferenceExpression()
|
|
.WithILInstruction(target)
|
|
.WithRR(new ThisResolveResult(memberDeclaringType, nonVirtualInvocation));
|
|
} else {
|
|
var translatedTarget = Translate(target, memberDeclaringType);
|
|
if (CallInstruction.ExpectedTypeForThisPointer(memberDeclaringType) == StackType.Ref && translatedTarget.Type.GetStackType().IsIntegerType()) {
|
|
// when accessing members on value types, ensure we use a reference and not a pointer
|
|
translatedTarget = translatedTarget.ConvertTo(new ByReferenceType(memberDeclaringType), this);
|
|
}
|
|
if (translatedTarget.Expression is DirectionExpression) {
|
|
// (ref x).member => x.member
|
|
translatedTarget = translatedTarget.UnwrapChild(((DirectionExpression)translatedTarget).Expression);
|
|
} else if (translatedTarget.Expression is UnaryOperatorExpression uoe
|
|
&& uoe.Operator == UnaryOperatorType.NullConditional
|
|
&& uoe.Expression is DirectionExpression) {
|
|
// (ref x)?.member => x?.member
|
|
translatedTarget = translatedTarget.UnwrapChild(((DirectionExpression)uoe.Expression).Expression);
|
|
// note: we need to create a new ResolveResult for the null-conditional operator,
|
|
// using the underlying type of the input expression without the DirectionExpression
|
|
translatedTarget = new UnaryOperatorExpression(UnaryOperatorType.NullConditional, translatedTarget)
|
|
.WithRR(new ResolveResult(NullableType.GetUnderlyingType(translatedTarget.Type)))
|
|
.WithoutILInstruction();
|
|
}
|
|
return translatedTarget;
|
|
}
|
|
} else {
|
|
return new TypeReferenceExpression(ConvertType(memberDeclaringType))
|
|
.WithoutILInstruction()
|
|
.WithRR(new TypeResolveResult(memberDeclaringType));
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdObj(LdObj inst, TranslationContext context)
|
|
{
|
|
var target = Translate(inst.Target);
|
|
if (TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) {
|
|
TranslatedExpression result;
|
|
if (target.Expression is DirectionExpression dirExpr) {
|
|
// we can dereference the managed reference by stripping away the 'ref'
|
|
result = target.UnwrapChild(dirExpr.Expression);
|
|
result.Expression.AddAnnotation(inst); // add LdObj in addition to the existing ILInstruction annotation
|
|
} else if (target.Type is PointerType pointerType) {
|
|
if (target.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.AddressOf) {
|
|
// We can dereference the pointer by stripping away the '&'
|
|
result = target.UnwrapChild(uoe.Expression);
|
|
result.Expression.AddAnnotation(inst); // add LdObj in addition to the existing ILInstruction annotation
|
|
} else {
|
|
// Dereference the existing pointer
|
|
result = new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(pointerType.ElementType));
|
|
}
|
|
} else {
|
|
// reference type behind non-DirectionExpression?
|
|
// this case should be impossible, but we can use a pointer cast
|
|
// just to make sure
|
|
target = target.ConvertTo(new PointerType(inst.Type), this);
|
|
return new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(inst.Type));
|
|
}
|
|
// we don't convert result to inst.Type, because the LdObj type
|
|
// might be inaccurate (it's often System.Object for all reference types),
|
|
// and our parent node should already insert casts where necessary
|
|
|
|
if (target.Type.IsSmallIntegerType() && inst.Type.IsSmallIntegerType() && target.Type.GetSign() != inst.Type.GetSign())
|
|
return result.ConvertTo(inst.Type, this);
|
|
return result;
|
|
} else {
|
|
// We need to cast the pointer type:
|
|
target = target.ConvertTo(new PointerType(inst.Type), this);
|
|
return new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(inst.Type));
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitStObj(StObj inst, TranslationContext context)
|
|
{
|
|
var target = Translate(inst.Target);
|
|
TranslatedExpression result;
|
|
if (target.Expression is DirectionExpression && TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) {
|
|
// we can deference the managed reference by stripping away the 'ref'
|
|
result = target.UnwrapChild(((DirectionExpression)target.Expression).Expression);
|
|
} else {
|
|
// Cast pointer type if necessary:
|
|
if (!TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) {
|
|
target = target.ConvertTo(new PointerType(inst.Type), this);
|
|
}
|
|
if (target.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.AddressOf) {
|
|
// *&ptr -> ptr
|
|
result = target.UnwrapChild(uoe.Expression);
|
|
} else {
|
|
result = new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression)
|
|
.WithoutILInstruction()
|
|
.WithRR(new ResolveResult(((TypeWithElementType)target.Type).ElementType));
|
|
}
|
|
}
|
|
var value = Translate(inst.Value, typeHint: result.Type);
|
|
return Assignment(result, value).WithILInstruction(inst);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdLen(LdLen inst, TranslationContext context)
|
|
{
|
|
TranslatedExpression arrayExpr = Translate(inst.Array);
|
|
if (arrayExpr.Type.Kind != TypeKind.Array) {
|
|
arrayExpr = arrayExpr.ConvertTo(compilation.FindType(KnownTypeCode.Array), this);
|
|
}
|
|
if (inst.ResultType == StackType.I4) {
|
|
return new MemberReferenceExpression(arrayExpr.Expression, "Length")
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Int32)));
|
|
} else {
|
|
return new MemberReferenceExpression(arrayExpr.Expression, "LongLength")
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Int64)));
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdFlda(LdFlda inst, TranslationContext context)
|
|
{
|
|
if (settings.FixedBuffers && inst.Field.Name == "FixedElementField"
|
|
&& inst.Target is LdFlda nestedLdFlda
|
|
&& CSharpDecompiler.IsFixedField(nestedLdFlda.Field, out var elementType, out _))
|
|
{
|
|
Expression fieldAccess = ConvertField(nestedLdFlda.Field, nestedLdFlda.Target);
|
|
fieldAccess.RemoveAnnotations<ResolveResult>();
|
|
var result = fieldAccess.WithRR(new ResolveResult(new PointerType(elementType)))
|
|
.WithILInstruction(inst);
|
|
if (inst.ResultType == StackType.Ref) {
|
|
// convert pointer back to ref
|
|
return result.ConvertTo(new ByReferenceType(elementType), this);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
TranslatedExpression expr;
|
|
if (TupleTransform.MatchTupleFieldAccess(inst, out IType underlyingTupleType, out var target, out int position)) {
|
|
var translatedTarget = TranslateTarget(target,
|
|
nonVirtualInvocation: true,
|
|
memberStatic: false,
|
|
memberDeclaringType: underlyingTupleType);
|
|
if (translatedTarget.Type is TupleType tupleType && tupleType.UnderlyingType.Equals(underlyingTupleType) && position <= tupleType.ElementNames.Length) {
|
|
string elementName = tupleType.ElementNames[position - 1];
|
|
if (elementName == null) {
|
|
elementName = "Item" + position;
|
|
}
|
|
expr = new MemberReferenceExpression(translatedTarget, elementName)
|
|
.WithRR(new MemberResolveResult(translatedTarget.ResolveResult, inst.Field))
|
|
.WithILInstruction(inst);
|
|
} else {
|
|
expr = ConvertField(inst.Field, inst.Target).WithILInstruction(inst);
|
|
}
|
|
} else {
|
|
expr = ConvertField(inst.Field, inst.Target).WithILInstruction(inst);
|
|
}
|
|
if (inst.ResultType == StackType.I) {
|
|
// ldflda producing native pointer
|
|
return new UnaryOperatorExpression(UnaryOperatorType.AddressOf, expr)
|
|
.WithoutILInstruction().WithRR(new ResolveResult(new PointerType(expr.Type)));
|
|
} else {
|
|
// ldflda producing managed pointer
|
|
return new DirectionExpression(FieldDirection.Ref, expr)
|
|
.WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false));
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdsFlda(LdsFlda inst, TranslationContext context)
|
|
{
|
|
var expr = ConvertField(inst.Field).WithILInstruction(inst);
|
|
return new DirectionExpression(FieldDirection.Ref, expr)
|
|
.WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitLdElema(LdElema inst, TranslationContext context)
|
|
{
|
|
TranslatedExpression arrayExpr = Translate(inst.Array);
|
|
var arrayType = arrayExpr.Type as ArrayType;
|
|
if (arrayType == null || !TypeUtils.IsCompatibleTypeForMemoryAccess(new ByReferenceType(arrayType.ElementType), inst.Type)) {
|
|
arrayType = new ArrayType(compilation, inst.Type, inst.Indices.Count);
|
|
arrayExpr = arrayExpr.ConvertTo(arrayType, this);
|
|
}
|
|
TranslatedExpression expr = new IndexerExpression(
|
|
arrayExpr, inst.Indices.Select(i => TranslateArrayIndex(i).Expression)
|
|
).WithILInstruction(inst).WithRR(new ResolveResult(arrayType.ElementType));
|
|
return new DirectionExpression(FieldDirection.Ref, expr)
|
|
.WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false));
|
|
}
|
|
|
|
TranslatedExpression TranslateArrayIndex(ILInstruction i)
|
|
{
|
|
var input = Translate(i);
|
|
KnownTypeCode targetType;
|
|
if (i.ResultType == StackType.I4) {
|
|
if (input.Type.IsSmallIntegerType() && input.Type.Kind != TypeKind.Enum) {
|
|
return input; // we don't need a cast, just let small integers be promoted to int
|
|
}
|
|
targetType = input.Type.GetSign() == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32;
|
|
} else {
|
|
targetType = input.Type.GetSign() == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64;
|
|
}
|
|
return input.ConvertTo(compilation.FindType(targetType), this);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitUnboxAny(UnboxAny inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
if (arg.Type.Equals(inst.Type) && inst.Argument.OpCode == OpCode.IsInst) {
|
|
// isinst followed by unbox.any of the same type is used for as-casts to generic types
|
|
return arg.WithILInstruction(inst);
|
|
}
|
|
if (arg.Type.IsReferenceType != true) {
|
|
// ensure we treat the input as a reference type
|
|
arg = arg.ConvertTo(compilation.FindType(KnownTypeCode.Object), this);
|
|
}
|
|
|
|
IType targetType = inst.Type;
|
|
if (targetType.Kind == TypeKind.TypeParameter) {
|
|
var rr = resolver.ResolveCast(targetType, arg.ResolveResult);
|
|
if (rr.IsError) {
|
|
// C# 6.2.7 Explicit conversions involving type parameters:
|
|
// if we can't directly convert to a type parameter,
|
|
// try via its effective base class.
|
|
arg = arg.ConvertTo(((ITypeParameter)targetType).EffectiveBaseClass, this);
|
|
}
|
|
}
|
|
return new CastExpression(ConvertType(targetType), arg.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConversionResolveResult(targetType, arg.ResolveResult, Conversion.UnboxingConversion));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitUnbox(Unbox inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
var castExpression = new CastExpression(ConvertType(inst.Type), arg.Expression)
|
|
.WithRR(new ConversionResolveResult(inst.Type, arg.ResolveResult, Conversion.UnboxingConversion));
|
|
return new DirectionExpression(FieldDirection.Ref, castExpression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ByReferenceResolveResult(castExpression.ResolveResult, isOut: false));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitBox(Box inst, TranslationContext context)
|
|
{
|
|
var obj = compilation.FindType(KnownTypeCode.Object);
|
|
var arg = Translate(inst.Argument, typeHint: inst.Type).ConvertTo(inst.Type, this);
|
|
return new CastExpression(ConvertType(obj), arg.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ConversionResolveResult(obj, arg.ResolveResult, Conversion.BoxingConversion));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitCastClass(CastClass inst, TranslationContext context)
|
|
{
|
|
return Translate(inst.Argument).ConvertTo(inst.Type, this);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitExpressionTreeCast(ExpressionTreeCast inst, TranslationContext context)
|
|
{
|
|
return Translate(inst.Argument).ConvertTo(inst.Type, this, inst.IsChecked);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitArglist(Arglist inst, TranslationContext context)
|
|
{
|
|
return new UndocumentedExpression { UndocumentedExpressionType = UndocumentedExpressionType.ArgListAccess }
|
|
.WithILInstruction(inst)
|
|
.WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeArgumentHandle"))));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitMakeRefAny(MakeRefAny inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument).Expression;
|
|
if (arg is DirectionExpression) {
|
|
arg = ((DirectionExpression)arg).Expression;
|
|
}
|
|
return new UndocumentedExpression {
|
|
UndocumentedExpressionType = UndocumentedExpressionType.MakeRef,
|
|
Arguments = { arg.Detach() }
|
|
}
|
|
.WithILInstruction(inst)
|
|
.WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "TypedReference"))));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitRefAnyType(RefAnyType inst, TranslationContext context)
|
|
{
|
|
return new MemberReferenceExpression(new UndocumentedExpression {
|
|
UndocumentedExpressionType = UndocumentedExpressionType.RefType,
|
|
Arguments = { Translate(inst.Argument).Expression.Detach() }
|
|
}, "TypeHandle")
|
|
.WithILInstruction(inst)
|
|
.WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeTypeHandle"))));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitRefAnyValue(RefAnyValue inst, TranslationContext context)
|
|
{
|
|
var expr = new UndocumentedExpression {
|
|
UndocumentedExpressionType = UndocumentedExpressionType.RefValue,
|
|
Arguments = { Translate(inst.Argument).Expression, new TypeReferenceExpression(ConvertType(inst.Type)) }
|
|
}.WithRR(new ResolveResult(inst.Type));
|
|
return new DirectionExpression(FieldDirection.Ref, expr.WithILInstruction(inst)).WithoutILInstruction()
|
|
.WithRR(new ByReferenceResolveResult(inst.Type, false));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitBlock(Block block, TranslationContext context)
|
|
{
|
|
switch (block.Kind) {
|
|
case BlockKind.ArrayInitializer:
|
|
return TranslateArrayInitializer(block);
|
|
case BlockKind.CollectionInitializer:
|
|
case BlockKind.ObjectInitializer:
|
|
return TranslateObjectAndCollectionInitializer(block);
|
|
case BlockKind.PostfixOperator:
|
|
return TranslatePostfixOperator(block);
|
|
case BlockKind.CallInlineAssign:
|
|
return TranslateSetterCallAssignment(block);
|
|
default:
|
|
return ErrorExpression("Unknown block type: " + block.Kind);
|
|
}
|
|
}
|
|
|
|
private TranslatedExpression TranslateSetterCallAssignment(Block block)
|
|
{
|
|
if (!block.MatchInlineAssignBlock(out var call, out var value)) {
|
|
// should never happen unless the ILAst is invalid
|
|
return ErrorExpression("Error: MatchInlineAssignBlock() returned false");
|
|
}
|
|
var arguments = call.Arguments.ToList();
|
|
arguments[arguments.Count - 1] = value;
|
|
return new CallBuilder(this, typeSystem, settings)
|
|
.Build(call.OpCode, call.Method, arguments)
|
|
.WithILInstruction(call);
|
|
}
|
|
|
|
TranslatedExpression TranslateObjectAndCollectionInitializer(Block block)
|
|
{
|
|
var stloc = block.Instructions.FirstOrDefault() as StLoc;
|
|
var final = block.FinalInstruction as LdLoc;
|
|
if (stloc == null || final == null || stloc.Variable != final.Variable || stloc.Variable.Kind != VariableKind.InitializerTarget)
|
|
throw new ArgumentException("given Block is invalid!");
|
|
InitializedObjectResolveResult initObjRR;
|
|
TranslatedExpression expr;
|
|
switch (stloc.Value) {
|
|
case NewObj newObjInst:
|
|
initObjRR = new InitializedObjectResolveResult(newObjInst.Method.DeclaringType);
|
|
expr = new CallBuilder(this, typeSystem, settings).Build(newObjInst);
|
|
break;
|
|
case DefaultValue defaultVal:
|
|
initObjRR = new InitializedObjectResolveResult(defaultVal.Type);
|
|
expr = new ObjectCreateExpression(ConvertType(defaultVal.Type))
|
|
.WithILInstruction(defaultVal)
|
|
.WithRR(new TypeResolveResult(defaultVal.Type));
|
|
break;
|
|
default:
|
|
throw new ArgumentException("given Block is invalid!");
|
|
}
|
|
var elementsStack = new Stack<List<Expression>>();
|
|
var elements = new List<Expression>(block.Instructions.Count);
|
|
elementsStack.Push(elements);
|
|
List<IL.Transforms.AccessPathElement> currentPath = null;
|
|
var indexVariables = new Dictionary<ILVariable, ILInstruction>();
|
|
foreach (var inst in block.Instructions.Skip(1)) {
|
|
if (inst is StLoc indexStore) {
|
|
indexVariables.Add(indexStore.Variable, indexStore.Value);
|
|
continue;
|
|
}
|
|
var info = IL.Transforms.AccessPathElement.GetAccessPath(inst, initObjRR.Type);
|
|
if (info.Kind == IL.Transforms.AccessPathKind.Invalid) continue;
|
|
if (currentPath == null) {
|
|
currentPath = info.Path;
|
|
} else {
|
|
int minLen = Math.Min(currentPath.Count, info.Path.Count);
|
|
int firstDifferenceIndex = 0;
|
|
while (firstDifferenceIndex < minLen && info.Path[firstDifferenceIndex] == currentPath[firstDifferenceIndex])
|
|
firstDifferenceIndex++;
|
|
while (elementsStack.Count - 1 > firstDifferenceIndex) {
|
|
var methodElement = currentPath[elementsStack.Count - 1];
|
|
var pathElement = currentPath[elementsStack.Count - 2];
|
|
var values = elementsStack.Pop();
|
|
elementsStack.Peek().Add(MakeInitializerAssignment(methodElement.Member, pathElement, values, indexVariables));
|
|
}
|
|
currentPath = info.Path;
|
|
}
|
|
while (elementsStack.Count < currentPath.Count)
|
|
elementsStack.Push(new List<Expression>());
|
|
var lastElement = currentPath.Last();
|
|
var memberRR = new MemberResolveResult(initObjRR, lastElement.Member);
|
|
switch (info.Kind) {
|
|
case IL.Transforms.AccessPathKind.Adder:
|
|
elementsStack.Peek().Add(MakeInitializerElements(info.Values, ((IMethod)lastElement.Member).Parameters));
|
|
break;
|
|
case IL.Transforms.AccessPathKind.Setter:
|
|
if (lastElement.Indices?.Length > 0) {
|
|
var indexer = new IndexerExpression(null, lastElement.Indices.SelectArray(i => TranslateInitializerIndexerValue(i, indexVariables)))
|
|
.WithILInstruction(inst).WithRR(memberRR);
|
|
elementsStack.Peek().Add(Assignment(indexer, Translate(info.Values.Single(), typeHint: indexer.Type)));
|
|
} else {
|
|
var assignment = new NamedExpression(lastElement.Member.Name, Translate(info.Values.Single(), typeHint: memberRR.Type))
|
|
.WithILInstruction(inst).WithRR(memberRR);
|
|
elementsStack.Peek().Add(assignment);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
while (elementsStack.Count > 1) {
|
|
var methodElement = currentPath[elementsStack.Count - 1];
|
|
var pathElement = currentPath[elementsStack.Count - 2];
|
|
var values = elementsStack.Pop();
|
|
elementsStack.Peek().Add(MakeInitializerAssignment(methodElement.Member, pathElement, values, indexVariables));
|
|
}
|
|
var oce = (ObjectCreateExpression)expr.Expression;
|
|
oce.Initializer = new ArrayInitializerExpression(elements);
|
|
return expr.WithILInstruction(block);
|
|
}
|
|
|
|
Expression TranslateInitializerIndexerValue(ILInstruction inst, Dictionary<ILVariable, ILInstruction> indexVariables)
|
|
{
|
|
if (inst is LdLoc ld && indexVariables.TryGetValue(ld.Variable, out var newInst)) {
|
|
inst = newInst;
|
|
}
|
|
return Translate(inst).Expression;
|
|
}
|
|
|
|
Expression MakeInitializerAssignment(IMember method, IL.Transforms.AccessPathElement member, List<Expression> values, Dictionary<ILVariable, ILInstruction> indexVariables)
|
|
{
|
|
Expression value;
|
|
if (values.Count == 1 && !(values[0] is AssignmentExpression || values[0] is NamedExpression) && !(method.SymbolKind == SymbolKind.Method && method.Name == "Add")) {
|
|
value = values[0];
|
|
} else {
|
|
value = new ArrayInitializerExpression(values);
|
|
}
|
|
if (member.Indices?.Length > 0) {
|
|
var index = new IndexerExpression(null, member.Indices.SelectArray(i => Translate(i is LdLoc ld ? indexVariables[ld.Variable] : i).Expression));
|
|
return new AssignmentExpression(index, value);
|
|
} else {
|
|
return new NamedExpression(member.Member.Name, value);
|
|
}
|
|
}
|
|
|
|
Expression MakeInitializerElements(List<ILInstruction> values, IReadOnlyList<IParameter> parameters)
|
|
{
|
|
if (values.Count == 1) {
|
|
return Translate(values[0], typeHint: parameters[0].Type).ConvertTo(parameters[0].Type, this);
|
|
}
|
|
var expressions = new Expression[values.Count];
|
|
for (int i = 0; i < values.Count; i++) {
|
|
expressions[i] = Translate(values[i], typeHint: parameters[i].Type).ConvertTo(parameters[i].Type, this);
|
|
}
|
|
return new ArrayInitializerExpression(expressions);
|
|
}
|
|
|
|
readonly static ArraySpecifier[] NoSpecifiers = new ArraySpecifier[0];
|
|
|
|
TranslatedExpression TranslateArrayInitializer(Block block)
|
|
{
|
|
var stloc = block.Instructions.FirstOrDefault() as StLoc;
|
|
var final = block.FinalInstruction as LdLoc;
|
|
IType type;
|
|
if (stloc == null || final == null || !stloc.Value.MatchNewArr(out type) || stloc.Variable != final.Variable || stloc.Variable.Kind != VariableKind.InitializerTarget)
|
|
throw new ArgumentException("given Block is invalid!");
|
|
var newArr = (NewArr)stloc.Value;
|
|
|
|
var translatedDimensions = newArr.Indices.Select(i => Translate(i)).ToArray();
|
|
|
|
if (!translatedDimensions.All(dim => dim.ResolveResult.IsCompileTimeConstant))
|
|
throw new ArgumentException("given Block is invalid!");
|
|
int dimensions = newArr.Indices.Count;
|
|
int[] dimensionSizes = translatedDimensions.Select(dim => (int)dim.ResolveResult.ConstantValue).ToArray();
|
|
var container = new Stack<ArrayInitializerExpression>();
|
|
var root = new ArrayInitializerExpression();
|
|
container.Push(root);
|
|
var elementResolveResults = new List<ResolveResult>();
|
|
|
|
for (int i = 1; i < block.Instructions.Count; i++) {
|
|
ILInstruction target, value, array;
|
|
IType t;
|
|
ILVariable v;
|
|
if (!block.Instructions[i].MatchStObj(out target, out value, out t) || !type.Equals(t))
|
|
throw new ArgumentException("given Block is invalid!");
|
|
if (!target.MatchLdElema(out t, out array) || !type.Equals(t))
|
|
throw new ArgumentException("given Block is invalid!");
|
|
if (!array.MatchLdLoc(out v) || v != final.Variable)
|
|
throw new ArgumentException("given Block is invalid!");
|
|
while (container.Count < dimensions) {
|
|
var aie = new ArrayInitializerExpression();
|
|
container.Peek().Elements.Add(aie);
|
|
container.Push(aie);
|
|
}
|
|
var val = Translate(value, typeHint: type).ConvertTo(type, this, allowImplicitConversion: true);
|
|
container.Peek().Elements.Add(val);
|
|
elementResolveResults.Add(val.ResolveResult);
|
|
while (container.Count > 0 && container.Peek().Elements.Count == dimensionSizes[container.Count - 1]) {
|
|
container.Pop();
|
|
}
|
|
}
|
|
ArraySpecifier[] additionalSpecifiers;
|
|
AstType typeExpression;
|
|
if (settings.AnonymousTypes && type.ContainsAnonymousType()) {
|
|
typeExpression = null;
|
|
additionalSpecifiers = new[] { new ArraySpecifier() };
|
|
} else {
|
|
typeExpression = ConvertType(type);
|
|
if (typeExpression is ComposedType compType && compType.ArraySpecifiers.Count > 0) {
|
|
additionalSpecifiers = compType.ArraySpecifiers.Select(a => (ArraySpecifier)a.Clone()).ToArray();
|
|
compType.ArraySpecifiers.Clear();
|
|
} else {
|
|
additionalSpecifiers = NoSpecifiers;
|
|
}
|
|
}
|
|
var expr = new ArrayCreateExpression {
|
|
Type = typeExpression,
|
|
Initializer = root
|
|
};
|
|
expr.AdditionalArraySpecifiers.AddRange(additionalSpecifiers);
|
|
if (!(bool)type.ContainsAnonymousType())
|
|
expr.Arguments.AddRange(newArr.Indices.Select(i => Translate(i).Expression));
|
|
return expr.WithILInstruction(block)
|
|
.WithRR(new ArrayCreateResolveResult(new ArrayType(compilation, type, dimensions), newArr.Indices.Select(i => Translate(i).ResolveResult).ToArray(), elementResolveResults));
|
|
}
|
|
|
|
TranslatedExpression TranslatePostfixOperator(Block block)
|
|
{
|
|
var targetInst = (block.Instructions.ElementAtOrDefault(0) as StLoc)?.Value;
|
|
var inst = (block.Instructions.ElementAtOrDefault(1) as StLoc)?.Value as BinaryNumericInstruction;
|
|
if (targetInst == null || inst == null || (inst.Operator != BinaryNumericOperator.Add && inst.Operator != BinaryNumericOperator.Sub))
|
|
throw new ArgumentException("given Block is invalid!");
|
|
var op = inst.Operator == BinaryNumericOperator.Add ? UnaryOperatorType.PostIncrement : UnaryOperatorType.PostDecrement;
|
|
var target = Translate(targetInst);
|
|
return new UnaryOperatorExpression(op, target)
|
|
.WithILInstruction(block)
|
|
.WithRR(resolver.WithCheckForOverflow(inst.CheckForOverflow).ResolveUnaryOperator(op, target.ResolveResult));
|
|
}
|
|
|
|
/// <summary>
|
|
/// If expr is a constant integer expression, and its value fits into type,
|
|
/// convert the expression into the target type.
|
|
/// Otherwise, returns the expression unmodified.
|
|
/// </summary>
|
|
TranslatedExpression AdjustConstantExpressionToType(TranslatedExpression expr, IType type)
|
|
{
|
|
if (!expr.ResolveResult.IsCompileTimeConstant) {
|
|
return expr;
|
|
}
|
|
type = NullableType.GetUnderlyingType(type);
|
|
if (type.IsKnownType(KnownTypeCode.Boolean)
|
|
&& (object.Equals(expr.ResolveResult.ConstantValue, 0) || object.Equals(expr.ResolveResult.ConstantValue, 1))) {
|
|
return expr.ConvertToBoolean(this);
|
|
} else if (type.Kind == TypeKind.Enum || type.IsKnownType(KnownTypeCode.Char)) {
|
|
var castRR = resolver.WithCheckForOverflow(true).ResolveCast(type, expr.ResolveResult);
|
|
if (castRR.IsCompileTimeConstant && !castRR.IsError) {
|
|
return ConvertConstantValue(castRR).WithILInstruction(expr.ILInstructions);
|
|
}
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitNullCoalescingInstruction(NullCoalescingInstruction inst, TranslationContext context)
|
|
{
|
|
var value = Translate(inst.ValueInst);
|
|
var fallback = Translate(inst.FallbackInst);
|
|
fallback = AdjustConstantExpressionToType(fallback, value.Type);
|
|
var rr = resolver.ResolveBinaryOperator(BinaryOperatorType.NullCoalescing, value.ResolveResult, fallback.ResolveResult);
|
|
if (rr.IsError) {
|
|
IType targetType;
|
|
if (!value.Type.Equals(SpecialType.NullType) && !fallback.Type.Equals(SpecialType.NullType) && !value.Type.Equals(fallback.Type)) {
|
|
targetType = compilation.FindType(inst.UnderlyingResultType.ToKnownTypeCode());
|
|
} else {
|
|
targetType = value.Type.Equals(SpecialType.NullType) ? fallback.Type : value.Type;
|
|
}
|
|
if (inst.Kind != NullCoalescingKind.Ref) {
|
|
value = value.ConvertTo(NullableType.Create(compilation, targetType), this);
|
|
} else {
|
|
value = value.ConvertTo(targetType, this);
|
|
}
|
|
if (inst.Kind == NullCoalescingKind.Nullable) {
|
|
value = value.ConvertTo(NullableType.Create(compilation, targetType), this);
|
|
} else {
|
|
fallback = fallback.ConvertTo(targetType, this);
|
|
}
|
|
rr = new ResolveResult(targetType);
|
|
}
|
|
return new BinaryOperatorExpression(value, BinaryOperatorType.NullCoalescing, fallback)
|
|
.WithILInstruction(inst)
|
|
.WithRR(rr);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitIfInstruction(IfInstruction inst, TranslationContext context)
|
|
{
|
|
var condition = TranslateCondition(inst.Condition);
|
|
var trueBranch = Translate(inst.TrueInst, typeHint: context.TypeHint);
|
|
var falseBranch = Translate(inst.FalseInst, typeHint: context.TypeHint);
|
|
BinaryOperatorType op = BinaryOperatorType.Any;
|
|
TranslatedExpression rhs = default(TranslatedExpression);
|
|
|
|
if (inst.MatchLogicAnd(out var lhsInst, out var rhsInst)) {
|
|
op = BinaryOperatorType.ConditionalAnd;
|
|
Debug.Assert(rhsInst == inst.TrueInst);
|
|
rhs = trueBranch;
|
|
} else if (inst.MatchLogicOr(out lhsInst, out rhsInst)) {
|
|
op = BinaryOperatorType.ConditionalOr;
|
|
Debug.Assert(rhsInst == inst.FalseInst);
|
|
rhs = falseBranch;
|
|
}
|
|
// ILAst LogicAnd/LogicOr can return a different value than 0 or 1
|
|
// if the rhs is evaluated.
|
|
// We can only correctly translate it to C# if the rhs is of type boolean:
|
|
if (op != BinaryOperatorType.Any && (rhs.Type.IsKnownType(KnownTypeCode.Boolean) || IfInstruction.IsInConditionSlot(inst))) {
|
|
rhs = rhs.ConvertToBoolean(this);
|
|
return new BinaryOperatorExpression(condition, op, rhs)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Boolean)));
|
|
}
|
|
|
|
trueBranch = AdjustConstantExpressionToType(trueBranch, falseBranch.Type);
|
|
falseBranch = AdjustConstantExpressionToType(falseBranch, trueBranch.Type);
|
|
|
|
var rr = resolver.ResolveConditional(condition.ResolveResult, trueBranch.ResolveResult, falseBranch.ResolveResult);
|
|
if (rr.IsError) {
|
|
IType targetType;
|
|
if (!trueBranch.Type.Equals(SpecialType.NullType) && !falseBranch.Type.Equals(SpecialType.NullType) && !trueBranch.Type.Equals(falseBranch.Type)) {
|
|
targetType = typeInference.GetBestCommonType(new[] { trueBranch.ResolveResult, falseBranch.ResolveResult }, out bool success);
|
|
if (!success || targetType.GetStackType() != inst.ResultType) {
|
|
// Figure out the target type based on inst.ResultType.
|
|
if (inst.ResultType == StackType.Ref) {
|
|
// targetType should be a ref-type
|
|
if (trueBranch.Type.Kind == TypeKind.ByReference) {
|
|
targetType = trueBranch.Type;
|
|
} else if (falseBranch.Type.Kind == TypeKind.ByReference) {
|
|
targetType = falseBranch.Type;
|
|
} else {
|
|
// fall back to 'ref byte' if we can't determine a referenced type otherwise
|
|
targetType = new ByReferenceType(compilation.FindType(KnownTypeCode.Byte));
|
|
}
|
|
} else {
|
|
targetType = compilation.FindType(inst.ResultType.ToKnownTypeCode());
|
|
}
|
|
}
|
|
} else {
|
|
targetType = trueBranch.Type.Equals(SpecialType.NullType) ? falseBranch.Type : trueBranch.Type;
|
|
}
|
|
trueBranch = trueBranch.ConvertTo(targetType, this);
|
|
falseBranch = falseBranch.ConvertTo(targetType, this);
|
|
rr = new ResolveResult(targetType);
|
|
}
|
|
if (rr.Type.Kind == TypeKind.ByReference) {
|
|
// C# conditional ref looks like this:
|
|
// ref (arr != null ? ref trueBranch : ref falseBranch);
|
|
var conditionalResolveResult = new ResolveResult(((ByReferenceType)rr.Type).ElementType);
|
|
return new DirectionExpression(FieldDirection.Ref,
|
|
new ConditionalExpression(condition.Expression, trueBranch.Expression, falseBranch.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(conditionalResolveResult)
|
|
).WithoutILInstruction().WithRR(new ByReferenceResolveResult(conditionalResolveResult, isOut: false));
|
|
} else {
|
|
return new ConditionalExpression(condition.Expression, trueBranch.Expression, falseBranch.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(rr);
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitAddressOf(AddressOf inst, TranslationContext context)
|
|
{
|
|
// HACK: this is only correct if the argument is an R-value; otherwise we're missing the copy to the temporary
|
|
var value = Translate(inst.Value);
|
|
return new DirectionExpression(FieldDirection.Ref, value)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ByReferenceResolveResult(value.ResolveResult, false));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitAwait(Await inst, TranslationContext context)
|
|
{
|
|
IType expectedType = null;
|
|
if (inst.GetAwaiterMethod != null) {
|
|
if (inst.GetAwaiterMethod.IsStatic) {
|
|
expectedType = inst.GetAwaiterMethod.Parameters.FirstOrDefault()?.Type;
|
|
} else {
|
|
expectedType = inst.GetAwaiterMethod.DeclaringType;
|
|
}
|
|
}
|
|
|
|
var value = Translate(inst.Value, typeHint: expectedType);
|
|
if (value.Expression is DirectionExpression) {
|
|
// we can deference the managed reference by stripping away the 'ref'
|
|
value = value.UnwrapChild(((DirectionExpression)value.Expression).Expression);
|
|
}
|
|
if (expectedType != null) {
|
|
value = value.ConvertTo(expectedType, this, allowImplicitConversion: true);
|
|
}
|
|
return new UnaryOperatorExpression(UnaryOperatorType.Await, value.Expression)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(inst.GetResultMethod?.ReturnType ?? SpecialType.UnknownType));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitNullableRewrap(NullableRewrap inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
IType type = arg.Type;
|
|
if (NullableType.IsNonNullableValueType(type)) {
|
|
type = NullableType.Create(compilation, type);
|
|
}
|
|
return new UnaryOperatorExpression(UnaryOperatorType.NullConditionalRewrap, arg)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(type));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitNullableUnwrap(NullableUnwrap inst, TranslationContext context)
|
|
{
|
|
var arg = Translate(inst.Argument);
|
|
if (inst.RefInput && !inst.RefOutput && arg.Expression is DirectionExpression dir) {
|
|
arg = arg.UnwrapChild(dir.Expression);
|
|
}
|
|
return new UnaryOperatorExpression(UnaryOperatorType.NullConditional, arg)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(NullableType.GetUnderlyingType(arg.Type)));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicConvertInstruction(DynamicConvertInstruction inst, TranslationContext context)
|
|
{
|
|
return Translate(inst.Argument).ConvertTo(inst.Type, this, inst.IsChecked);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicGetIndexInstruction(DynamicGetIndexInstruction inst, TranslationContext context)
|
|
{
|
|
var target = TranslateDynamicTarget(inst.Arguments[0], inst.ArgumentInfo[0]);
|
|
var arguments = TranslateDynamicArguments(inst.Arguments.Skip(1), inst.ArgumentInfo.Skip(1));
|
|
return new IndexerExpression(target, arguments)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(SpecialType.Dynamic));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicGetMemberInstruction(DynamicGetMemberInstruction inst, TranslationContext context)
|
|
{
|
|
var target = TranslateDynamicTarget(inst.Target, inst.TargetArgumentInfo);
|
|
return new MemberReferenceExpression(target, inst.Name)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(SpecialType.Dynamic));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicInvokeConstructorInstruction(DynamicInvokeConstructorInstruction inst, TranslationContext context)
|
|
{
|
|
IL.Transforms.TransformExpressionTrees.MatchGetTypeFromHandle(inst.Arguments[0], out var constructorType);
|
|
return new ObjectCreateExpression(ConvertType(constructorType), inst.Arguments.Skip(1).Select(arg => Translate(arg, SpecialType.Dynamic).Expression))
|
|
.WithILInstruction(inst).WithRR(new ResolveResult(constructorType));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicInvokeMemberInstruction(DynamicInvokeMemberInstruction inst, TranslationContext context)
|
|
{
|
|
var target = TranslateDynamicTarget(inst.Arguments[0], inst.ArgumentInfo[0]);
|
|
var arguments = TranslateDynamicArguments(inst.Arguments.Skip(1), inst.ArgumentInfo.Skip(1));
|
|
return new InvocationExpression(new MemberReferenceExpression(target, inst.Name, inst.TypeArguments.Select(ConvertType)), arguments)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(SpecialType.Dynamic));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicInvokeInstruction(DynamicInvokeInstruction inst, TranslationContext context)
|
|
{
|
|
var target = TranslateDynamicTarget(inst.Arguments[0], inst.ArgumentInfo[0]);
|
|
var arguments = TranslateDynamicArguments(inst.Arguments.Skip(1), inst.ArgumentInfo.Skip(1));
|
|
return new InvocationExpression(target, arguments)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(SpecialType.Dynamic));
|
|
}
|
|
|
|
TranslatedExpression TranslateDynamicTarget(ILInstruction inst, CSharpArgumentInfo argumentInfo)
|
|
{
|
|
Debug.Assert(!argumentInfo.Flags.HasFlag(CSharpArgumentInfoFlags.NamedArgument));
|
|
Debug.Assert(!argumentInfo.Flags.HasFlag(CSharpArgumentInfoFlags.IsOut));
|
|
Debug.Assert(!argumentInfo.Flags.HasFlag(CSharpArgumentInfoFlags.IsRef));
|
|
Debug.Assert(!argumentInfo.Flags.HasFlag(CSharpArgumentInfoFlags.Constant));
|
|
|
|
if (argumentInfo.Flags.HasFlag(CSharpArgumentInfoFlags.IsStaticType) && IL.Transforms.TransformExpressionTrees.MatchGetTypeFromHandle(inst, out var callTargetType))
|
|
return new TypeReferenceExpression(ConvertType(callTargetType))
|
|
.WithoutILInstruction()
|
|
.WithRR(new TypeResolveResult(callTargetType));
|
|
IType targetType = SpecialType.Dynamic;
|
|
if (argumentInfo.Flags.HasFlag(CSharpArgumentInfoFlags.UseCompileTimeType))
|
|
targetType = argumentInfo.CompileTimeType;
|
|
return Translate(inst, targetType).ConvertTo(targetType, this);
|
|
}
|
|
|
|
IEnumerable<Expression> TranslateDynamicArguments(IEnumerable<ILInstruction> arguments, IEnumerable<CSharpArgumentInfo> argumentInfo)
|
|
{
|
|
foreach (var (argument, info) in arguments.Zip(argumentInfo))
|
|
yield return TranslateDynamicArgument(argument, info).Expression;
|
|
}
|
|
|
|
TranslatedExpression TranslateDynamicArgument(ILInstruction argument, CSharpArgumentInfo info)
|
|
{
|
|
Debug.Assert(!info.Flags.HasFlag(CSharpArgumentInfoFlags.IsStaticType));
|
|
|
|
IType typeHint = SpecialType.Dynamic;
|
|
if (info.Flags.HasFlag(CSharpArgumentInfoFlags.UseCompileTimeType)) {
|
|
typeHint = info.CompileTimeType;
|
|
}
|
|
if (info.Flags.HasFlag(CSharpArgumentInfoFlags.IsRef) || info.Flags.HasFlag(CSharpArgumentInfoFlags.IsOut)) {
|
|
typeHint = new ByReferenceType(typeHint);
|
|
}
|
|
var translatedExpression = Translate(argument, typeHint);
|
|
if (!(typeHint.Equals(SpecialType.Dynamic) && translatedExpression.Type.Equals(SpecialType.NullType)))
|
|
translatedExpression = translatedExpression.ConvertTo(typeHint, this);
|
|
if (info.Flags.HasFlag(CSharpArgumentInfoFlags.IsOut)) {
|
|
translatedExpression = ChangeDirectionExpressionToOut(translatedExpression);
|
|
}
|
|
if (info.Flags.HasFlag(CSharpArgumentInfoFlags.NamedArgument) && !string.IsNullOrWhiteSpace(info.Name))
|
|
translatedExpression = new TranslatedExpression(new NamedArgumentExpression(info.Name, translatedExpression.Expression));
|
|
return translatedExpression;
|
|
}
|
|
|
|
internal static TranslatedExpression ChangeDirectionExpressionToOut(TranslatedExpression input)
|
|
{
|
|
if (!(input.Expression is DirectionExpression dirExpr && input.ResolveResult is ByReferenceResolveResult brrr))
|
|
return input;
|
|
dirExpr.FieldDirection = FieldDirection.Out;
|
|
dirExpr.RemoveAnnotations<ByReferenceResolveResult>();
|
|
if (brrr.ElementResult == null)
|
|
brrr = new ByReferenceResolveResult(brrr.ElementType, isOut: true);
|
|
else
|
|
brrr = new ByReferenceResolveResult(brrr.ElementResult, isOut: true);
|
|
dirExpr.AddAnnotation(brrr);
|
|
return new TranslatedExpression(dirExpr);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicSetIndexInstruction(DynamicSetIndexInstruction inst, TranslationContext context)
|
|
{
|
|
Debug.Assert(inst.Arguments.Count >= 3);
|
|
var target = TranslateDynamicTarget(inst.Arguments[0], inst.ArgumentInfo[0]).Expression;
|
|
var arguments = TranslateDynamicArguments(inst.Arguments.Skip(1), inst.ArgumentInfo.Skip(1));
|
|
var value = new TranslatedExpression(arguments.Last());
|
|
var indexer = new IndexerExpression(target, arguments.Take(inst.Arguments.Count - 2));
|
|
return Assignment(
|
|
indexer.WithoutILInstruction().WithRR(new ResolveResult(SpecialType.Dynamic)),
|
|
value
|
|
).WithILInstruction(inst);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicSetMemberInstruction(DynamicSetMemberInstruction inst, TranslationContext context)
|
|
{
|
|
var target = TranslateDynamicTarget(inst.Target, inst.TargetArgumentInfo);
|
|
var value = TranslateDynamicArgument(inst.Value, inst.ValueArgumentInfo);
|
|
return Assignment(
|
|
new MemberReferenceExpression(target, inst.Name).WithoutILInstruction().WithRR(new ResolveResult(SpecialType.Dynamic)),
|
|
value
|
|
).WithILInstruction(inst);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicBinaryOperatorInstruction(DynamicBinaryOperatorInstruction inst, TranslationContext context)
|
|
{
|
|
switch (inst.Operation) {
|
|
case ExpressionType.Add:
|
|
return CreateBinaryOperator(BinaryOperatorType.Add);
|
|
case ExpressionType.Subtract:
|
|
return CreateBinaryOperator(BinaryOperatorType.Subtract);
|
|
case ExpressionType.Multiply:
|
|
return CreateBinaryOperator(BinaryOperatorType.Multiply);
|
|
case ExpressionType.Divide:
|
|
return CreateBinaryOperator(BinaryOperatorType.Divide);
|
|
case ExpressionType.Modulo:
|
|
return CreateBinaryOperator(BinaryOperatorType.Modulus);
|
|
case ExpressionType.Equal:
|
|
return CreateBinaryOperator(BinaryOperatorType.Equality);
|
|
case ExpressionType.NotEqual:
|
|
return CreateBinaryOperator(BinaryOperatorType.InEquality);
|
|
case ExpressionType.LessThan:
|
|
return CreateBinaryOperator(BinaryOperatorType.LessThan);
|
|
case ExpressionType.LessThanOrEqual:
|
|
return CreateBinaryOperator(BinaryOperatorType.LessThanOrEqual);
|
|
case ExpressionType.GreaterThan:
|
|
return CreateBinaryOperator(BinaryOperatorType.GreaterThan);
|
|
case ExpressionType.GreaterThanOrEqual:
|
|
return CreateBinaryOperator(BinaryOperatorType.GreaterThanOrEqual);
|
|
case ExpressionType.Or:
|
|
return CreateBinaryOperator(BinaryOperatorType.BitwiseOr);
|
|
case ExpressionType.And:
|
|
return CreateBinaryOperator(BinaryOperatorType.BitwiseAnd);
|
|
case ExpressionType.ExclusiveOr:
|
|
return CreateBinaryOperator(BinaryOperatorType.ExclusiveOr);
|
|
case ExpressionType.LeftShift:
|
|
return CreateBinaryOperator(BinaryOperatorType.ShiftLeft);
|
|
case ExpressionType.RightShift:
|
|
return CreateBinaryOperator(BinaryOperatorType.ShiftRight);
|
|
default:
|
|
return base.VisitDynamicBinaryOperatorInstruction(inst, context);
|
|
}
|
|
|
|
TranslatedExpression CreateBinaryOperator(BinaryOperatorType operatorType)
|
|
{
|
|
var left = TranslateDynamicArgument(inst.Left, inst.LeftArgumentInfo);
|
|
var right = TranslateDynamicArgument(inst.Right, inst.RightArgumentInfo);
|
|
return new BinaryOperatorExpression(left.Expression, operatorType, right.Expression)
|
|
.WithILInstruction(inst).WithRR(new ResolveResult(SpecialType.Dynamic));
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicUnaryOperatorInstruction(DynamicUnaryOperatorInstruction inst, TranslationContext context)
|
|
{
|
|
switch (inst.Operation) {
|
|
case ExpressionType.Not:
|
|
return CreateUnaryOperator(UnaryOperatorType.Not);
|
|
case ExpressionType.Decrement:
|
|
return CreateUnaryOperator(UnaryOperatorType.Decrement);
|
|
case ExpressionType.Increment:
|
|
return CreateUnaryOperator(UnaryOperatorType.Increment);
|
|
case ExpressionType.Negate:
|
|
return CreateUnaryOperator(UnaryOperatorType.Minus);
|
|
case ExpressionType.UnaryPlus:
|
|
return CreateUnaryOperator(UnaryOperatorType.Plus);
|
|
case ExpressionType.IsTrue:
|
|
var operand = TranslateDynamicArgument(inst.Operand, inst.OperandArgumentInfo);
|
|
if (IfInstruction.IsInConditionSlot(inst)) {
|
|
// TODO
|
|
}
|
|
return new ConditionalExpression(operand.Expression, new PrimitiveExpression(true), new PrimitiveExpression(false))
|
|
.WithILInstruction(inst)
|
|
.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Boolean)));
|
|
default:
|
|
return base.VisitDynamicUnaryOperatorInstruction(inst, context);
|
|
}
|
|
|
|
TranslatedExpression CreateUnaryOperator(UnaryOperatorType operatorType)
|
|
{
|
|
var operand = TranslateDynamicArgument(inst.Operand, inst.OperandArgumentInfo);
|
|
return new UnaryOperatorExpression(operatorType, operand.Expression)
|
|
.WithILInstruction(inst).WithRR(new ResolveResult(SpecialType.Dynamic));
|
|
}
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitDynamicCompoundAssign(DynamicCompoundAssign inst, TranslationContext context)
|
|
{
|
|
var target = TranslateDynamicArgument(inst.Target, inst.TargetArgumentInfo);
|
|
var value = TranslateDynamicArgument(inst.Value, inst.ValueArgumentInfo);
|
|
|
|
return new AssignmentExpression(target, AssignmentExpression.GetAssignmentOperatorTypeFromExpressionType(inst.Operation), value)
|
|
.WithILInstruction(inst)
|
|
.WithRR(new OperatorResolveResult(SpecialType.Dynamic, inst.Operation, new[] { target.ResolveResult, value.ResolveResult }));
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitInvalidBranch(InvalidBranch inst, TranslationContext context)
|
|
{
|
|
string message = "Error";
|
|
if (inst.ILRange.Start != 0) {
|
|
message += $" near IL_{inst.ILRange.Start:x4}";
|
|
}
|
|
if (!string.IsNullOrEmpty(inst.Message)) {
|
|
message += ": " + inst.Message;
|
|
}
|
|
return ErrorExpression(message);
|
|
}
|
|
|
|
protected internal override TranslatedExpression VisitInvalidExpression(InvalidExpression inst, TranslationContext context)
|
|
{
|
|
string message = "Error";
|
|
if (inst.ILRange.Start != 0) {
|
|
message += $" near IL_{inst.ILRange.Start:x4}";
|
|
}
|
|
if (!string.IsNullOrEmpty(inst.Message)) {
|
|
message += ": " + inst.Message;
|
|
}
|
|
return ErrorExpression(message);
|
|
}
|
|
|
|
protected override TranslatedExpression Default(ILInstruction inst, TranslationContext context)
|
|
{
|
|
return ErrorExpression("OpCode not supported: " + inst.OpCode);
|
|
}
|
|
|
|
static TranslatedExpression ErrorExpression(string message)
|
|
{
|
|
var e = new ErrorExpression();
|
|
e.AddChild(new Comment(message, CommentType.MultiLine), Roles.Comment);
|
|
return e.WithoutILInstruction().WithRR(ErrorResolveResult.UnknownError);
|
|
}
|
|
}
|
|
}
|