|
|
//
// PkzipClassic encryption
//
// Copyright 2004 John Reilly
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent
// modules, and to copy and distribute the resulting executable under
// terms of your choice, provided that you also meet, for each linked
// independent module, the terms and conditions of the license of that
// module. An independent module is a module which is not derived from
// or based on this library. If you modify this library, you may extend
// this exception to your version of the library, but you are not
// obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
#if !NETCF_1_0
using System; using System.Security.Cryptography; using Externals.Compression.Checksums;
namespace Externals.Compression.Encryption { /// <summary>
/// PkzipClassic embodies the classic or original encryption facilities used in Pkzip archives.
/// While it has been superceded by more recent and more powerful algorithms, its still in use and
/// is viable for preventing casual snooping
/// </summary>
internal abstract class PkzipClassic : SymmetricAlgorithm { /// <summary>
/// Generates new encryption keys based on given seed
/// </summary>
/// <param name="seed">The seed value to initialise keys with.</param>
/// <returns>A new key value.</returns>
static public byte[] GenerateKeys(byte[] seed) { if ( seed == null ) { throw new ArgumentNullException("seed"); }
if ( seed.Length == 0 ) { throw new ArgumentException("Length is zero", "seed"); }
uint[] newKeys = new uint[] { 0x12345678, 0x23456789, 0x34567890 }; for (int i = 0; i < seed.Length; ++i) { newKeys[0] = Crc32.ComputeCrc32(newKeys[0], seed[i]); newKeys[1] = newKeys[1] + (byte)newKeys[0]; newKeys[1] = newKeys[1] * 134775813 + 1; newKeys[2] = Crc32.ComputeCrc32(newKeys[2], (byte)(newKeys[1] >> 24)); }
byte[] result = new byte[12]; result[0] = (byte)(newKeys[0] & 0xff); result[1] = (byte)((newKeys[0] >> 8) & 0xff); result[2] = (byte)((newKeys[0] >> 16) & 0xff); result[3] = (byte)((newKeys[0] >> 24) & 0xff); result[4] = (byte)(newKeys[1] & 0xff); result[5] = (byte)((newKeys[1] >> 8) & 0xff); result[6] = (byte)((newKeys[1] >> 16) & 0xff); result[7] = (byte)((newKeys[1] >> 24) & 0xff); result[8] = (byte)(newKeys[2] & 0xff); result[9] = (byte)((newKeys[2] >> 8) & 0xff); result[10] = (byte)((newKeys[2] >> 16) & 0xff); result[11] = (byte)((newKeys[2] >> 24) & 0xff); return result; } }
/// <summary>
/// PkzipClassicCryptoBase provides the low level facilities for encryption
/// and decryption using the PkzipClassic algorithm.
/// </summary>
class PkzipClassicCryptoBase { /// <summary>
/// Transform a single byte
/// </summary>
/// <returns>
/// The transformed value
/// </returns>
protected byte TransformByte() { uint temp = ((keys[2] & 0xFFFF) | 2); return (byte)((temp * (temp ^ 1)) >> 8); }
/// <summary>
/// Set the key schedule for encryption/decryption.
/// </summary>
/// <param name="keyData">The data use to set the keys from.</param>
protected void SetKeys(byte[] keyData) { if ( keyData == null ) { throw new ArgumentNullException("keyData"); } if ( keyData.Length != 12 ) { throw new InvalidOperationException("Key length is not valid"); } keys = new uint[3]; keys[0] = (uint)((keyData[3] << 24) | (keyData[2] << 16) | (keyData[1] << 8) | keyData[0]); keys[1] = (uint)((keyData[7] << 24) | (keyData[6] << 16) | (keyData[5] << 8) | keyData[4]); keys[2] = (uint)((keyData[11] << 24) | (keyData[10] << 16) | (keyData[9] << 8) | keyData[8]); }
/// <summary>
/// Update encryption keys
/// </summary>
protected void UpdateKeys(byte ch) { keys[0] = Crc32.ComputeCrc32(keys[0], ch); keys[1] = keys[1] + (byte)keys[0]; keys[1] = keys[1] * 134775813 + 1; keys[2] = Crc32.ComputeCrc32(keys[2], (byte)(keys[1] >> 24)); }
/// <summary>
/// Reset the internal state.
/// </summary>
protected void Reset() { keys[0] = 0; keys[1] = 0; keys[2] = 0; } #region Instance Fields
uint[] keys; #endregion
}
/// <summary>
/// PkzipClassic CryptoTransform for encryption.
/// </summary>
class PkzipClassicEncryptCryptoTransform : PkzipClassicCryptoBase, ICryptoTransform { /// <summary>
/// Initialise a new instance of <see cref="PkzipClassicEncryptCryptoTransform"></see>
/// </summary>
/// <param name="keyBlock">The key block to use.</param>
internal PkzipClassicEncryptCryptoTransform(byte[] keyBlock) { SetKeys(keyBlock); }
#region ICryptoTransform Members
/// <summary>
/// Transforms the specified region of the specified byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the byte array to use as data.</param>
/// <returns>The computed transform.</returns>
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount) { byte[] result = new byte[inputCount]; TransformBlock(inputBuffer, inputOffset, inputCount, result, 0); return result; }
/// <summary>
/// Transforms the specified region of the input byte array and copies
/// the resulting transform to the specified region of the output byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
/// <param name="outputBuffer">The output to which to write the transform.</param>
/// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
/// <returns>The number of bytes written.</returns>
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset) { for (int i = inputOffset; i < inputOffset + inputCount; ++i) { byte oldbyte = inputBuffer[i]; outputBuffer[outputOffset++] = (byte)(inputBuffer[i] ^ TransformByte()); UpdateKeys(oldbyte); } return inputCount; }
/// <summary>
/// Gets a value indicating whether the current transform can be reused.
/// </summary>
public bool CanReuseTransform { get { return true; } }
/// <summary>
/// Gets the size of the input data blocks in bytes.
/// </summary>
public int InputBlockSize { get { return 1; } }
/// <summary>
/// Gets the size of the output data blocks in bytes.
/// </summary>
public int OutputBlockSize { get { return 1; } }
/// <summary>
/// Gets a value indicating whether multiple blocks can be transformed.
/// </summary>
public bool CanTransformMultipleBlocks { get { return true; } }
#endregion
#region IDisposable Members
/// <summary>
/// Cleanup internal state.
/// </summary>
public void Dispose() { Reset(); }
#endregion
}
/// <summary>
/// PkzipClassic CryptoTransform for decryption.
/// </summary>
class PkzipClassicDecryptCryptoTransform : PkzipClassicCryptoBase, ICryptoTransform { /// <summary>
/// Initialise a new instance of <see cref="PkzipClassicDecryptCryptoTransform"></see>.
/// </summary>
/// <param name="keyBlock">The key block to decrypt with.</param>
internal PkzipClassicDecryptCryptoTransform(byte[] keyBlock) { SetKeys(keyBlock); }
#region ICryptoTransform Members
/// <summary>
/// Transforms the specified region of the specified byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the byte array to use as data.</param>
/// <returns>The computed transform.</returns>
public byte[] TransformFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount) { byte[] result = new byte[inputCount]; TransformBlock(inputBuffer, inputOffset, inputCount, result, 0); return result; }
/// <summary>
/// Transforms the specified region of the input byte array and copies
/// the resulting transform to the specified region of the output byte array.
/// </summary>
/// <param name="inputBuffer">The input for which to compute the transform.</param>
/// <param name="inputOffset">The offset into the input byte array from which to begin using data.</param>
/// <param name="inputCount">The number of bytes in the input byte array to use as data.</param>
/// <param name="outputBuffer">The output to which to write the transform.</param>
/// <param name="outputOffset">The offset into the output byte array from which to begin writing data.</param>
/// <returns>The number of bytes written.</returns>
public int TransformBlock(byte[] inputBuffer, int inputOffset, int inputCount, byte[] outputBuffer, int outputOffset) { for (int i = inputOffset; i < inputOffset + inputCount; ++i) { byte newByte = (byte)(inputBuffer[i] ^ TransformByte()); outputBuffer[outputOffset++] = newByte; UpdateKeys(newByte); } return inputCount; }
/// <summary>
/// Gets a value indicating whether the current transform can be reused.
/// </summary>
public bool CanReuseTransform { get { return true; } }
/// <summary>
/// Gets the size of the input data blocks in bytes.
/// </summary>
public int InputBlockSize { get { return 1; } }
/// <summary>
/// Gets the size of the output data blocks in bytes.
/// </summary>
public int OutputBlockSize { get { return 1; } }
/// <summary>
/// Gets a value indicating whether multiple blocks can be transformed.
/// </summary>
public bool CanTransformMultipleBlocks { get { return true; } }
#endregion
#region IDisposable Members
/// <summary>
/// Cleanup internal state.
/// </summary>
public void Dispose() { Reset(); }
#endregion
}
/// <summary>
/// Defines a wrapper object to access the Pkzip algorithm.
/// This class cannot be inherited.
/// </summary>
internal sealed class PkzipClassicManaged : PkzipClassic { /// <summary>
/// Get / set the applicable block size in bits.
/// </summary>
/// <remarks>The only valid block size is 8.</remarks>
public override int BlockSize { get { return 8; }
set { if (value != 8) { throw new CryptographicException("Block size is invalid"); } } }
/// <summary>
/// Get an array of legal <see cref="KeySizes">key sizes.</see>
/// </summary>
public override KeySizes[] LegalKeySizes { get { KeySizes[] keySizes = new KeySizes[1]; keySizes[0] = new KeySizes(12 * 8, 12 * 8, 0); return keySizes; } }
/// <summary>
/// Generate an initial vector.
/// </summary>
public override void GenerateIV() { // Do nothing.
}
/// <summary>
/// Get an array of legal <see cref="KeySizes">block sizes</see>.
/// </summary>
public override KeySizes[] LegalBlockSizes { get { KeySizes[] keySizes = new KeySizes[1]; keySizes[0] = new KeySizes(1 * 8, 1 * 8, 0); return keySizes; } }
/// <summary>
/// Get / set the key value applicable.
/// </summary>
public override byte[] Key { get { if ( key_ == null ) { GenerateKey(); } return (byte[]) key_.Clone(); } set { if ( value == null ) { throw new ArgumentNullException("value"); } if ( value.Length != 12 ) { throw new CryptographicException("Key size is illegal"); } key_ = (byte[]) value.Clone(); } }
/// <summary>
/// Generate a new random key.
/// </summary>
public override void GenerateKey() { key_ = new byte[12]; Random rnd = new Random(); rnd.NextBytes(key_); }
/// <summary>
/// Create an encryptor.
/// </summary>
/// <param name="rgbKey">The key to use for this encryptor.</param>
/// <param name="rgbIV">Initialisation vector for the new encryptor.</param>
/// <returns>Returns a new PkzipClassic encryptor</returns>
public override ICryptoTransform CreateEncryptor( byte[] rgbKey, byte[] rgbIV) { key_ = rgbKey; return new PkzipClassicEncryptCryptoTransform(Key); }
/// <summary>
/// Create a decryptor.
/// </summary>
/// <param name="rgbKey">Keys to use for this new decryptor.</param>
/// <param name="rgbIV">Initialisation vector for the new decryptor.</param>
/// <returns>Returns a new decryptor.</returns>
public override ICryptoTransform CreateDecryptor( byte[] rgbKey, byte[] rgbIV) { key_ = rgbKey; return new PkzipClassicDecryptCryptoTransform(Key); } #region Instance Fields
byte[] key_; #endregion
} } #endif
|